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“Pumping Iron”?

exciting magnetization in ferromagnetic material 

(e.g., thin film of iron) with microwave, etc.



𝐻𝑒𝑓𝑓: effective field

𝑀: magnetization

“Pumping Iron”?

animation courtesy of Profs. C. Mewes & T. Mewes

precession 

(rotation about field)

Gilbert damping 

(aligning along field)

exciting magnetization in ferromagnetic material 

(e.g., thin film of iron) with microwave, etc.



Outline

• Gilbert damping: basics, applications, measurement 

• Highly crystalline iron (Fe) films as model systems

• Experimental results on Gilbert damping 

• Mechanism for observed Gilbert damping & 

comparison with published calculations

B. Khodadadi, SE. Phys. Rev. Lett. 124,157201 (2020)



Outline

• Gilbert damping: basics, applications, measurement 

• Highly crystalline iron (Fe) films as model systems

• Experimental results on Gilbert damping 

• Mechanism for observed Gilbert damping & 

    comparison with published calculations

B. Khodadadi, SE. Phys. Rev. Lett. 124,157201 (2020)



Magnetic precession

Magnetization precesses about 

effective magnetic field Heff 

magnetization, 

M
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Gilbert damping

Heff

M

In all real magnetic materials,

damping relaxes magnetization → Heff

(time scale: ~ ps – ns)

damping allows for magnetizing materials
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Landau-Liftshitz-Gilbert equation:

net torque on magnetization M



Low Gilbert damping for applications 

energy-efficient information/signal processing

lower damping = lower loss

http://cspin.umn.edu/news/newsletters/newsletter_aug2014.html

magnetization switching 

(magnetic memories)

“1”

“0”

low damping 

→ energy efficiency

high damping 

→ faster switching

tradeoff

http://cspin.umn.edu/news/newsletters/newsletter_aug2014.html


Low Gilbert damping for applications 

energy-efficient information/signal processing

https://staff.aist.go.jp/v.zayets/spin3_47_exchange.html

lower damping = lower loss

http://cspin.umn.edu/news/newsletters/newsletter_aug2014.html

spin wave propagation 

(wave computing)

magnetization switching 

(magnetic memories)

“1”

“0”

mechanisms of damping not well understood…

even in seemingly ‘simple’ magnetic materials

https://staff.aist.go.jp/v.zayets/spin3_47_exchange.html
http://cspin.umn.edu/news/newsletters/newsletter_aug2014.html
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How to measure Gilbert damping
ferromagnetic resonance (FMR) spectroscopy

M

H-field

“FMR linewidth” 

~ damping

microwave

sample

microwave 

source

microwave 

power meter

H-fieldwaveguide

“forced oscillation” with 

microwave (GHz)

at resonance: magnetization precesses 

& sample absorbs microwave power



How to measure Gilbert damping

Damping parameter α:

proportional to slope of 

linewidth vs frequency
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α ≈ 0.007 for permalloy

(α ~ 0.001-0.1 typical for 

magnetic metals)

FMR linewidth



intuitive expectation:

Gilbert damping mechanism?

less disorder, scattering

better crystalline quality

lower temperature

lower damping

Can we identify mechanisms of 

Gilbert damping experimentally?

magnetic 

precession

spin-polarized

electrons
dissipative spin 

scattering

damping



Outline

• Gilbert damping: basics, applications, measurement 

• Highly crystalline iron (Fe) films as model systems

• Experimental results on Gilbert damping 

• Mechanism for observed Gilbert damping & 

comparison with published calculations

B. Khodadadi, SE. Phys. Rev. Lett. 124,157201 (2020)



Epitaxial BCC Fe: Simple model system

Advantages:

• simple – single element!

• commercially available lattice-

matched substrates

• epitaxial films: straightforward 

to compare with theory

J. R. Arthur, Surf. Sci. 500, 189 (2002)

Epitaxial film:

highly crystalline film grown 

on crystal substrate

film

substrate

BCC (body-centered cubic):

crystal structure of solid Fe



Epitaxial BCC Fe: Simple model system

single-crystal 

substrate

Fe 25 nm 

Ti capping layer 

MgAl2O4 (MAO), 

MgO

Fe thin films grown by 

sputter deposition

http://www.ajaint.com/what-is-sputtering.html

substrate held at 200 oC

http://www.ajaint.com/what-is-sputtering.html


Model systems: oxide-substrate/epi-Fe

Fe Fe

MgO
MgAl2O4

(MAO)

≈ 4% lattice mismatch < 0.4% lattice mismatch 

Fe

MgAl2O4

(MAO)

MAO/Fe: coherently strained

(better crystallinity)

Fe

MgO

MgO/Fe: relaxed

(poorer crystallinity)

Inspired by A. Lee et al. Nat. Commun. 8, 234 (2017)



Epitaxy of Fe films

X-ray diffraction confirms epitaxial growth;

no secondary phases observed 

MAO/Fe

MgO/Fe



Epitaxy of Fe films

MAO/Fe exhibits better crystallinity, smoother interfaces 

(narrower peak & pronounced thickness fringes) than MgO/Fe

MAO/Fe

MgO/Fe

thickness fringes



Epitaxy of Fe films

MAO/Fe exhibits better-aligned crystallites 

(narrower rocking curve) than MgO/Fe

MAO/Fe

MgO/Fe



Hypothesis

Fe

MAO

Fe

MgO

relaxed

(more disorder)

coherently strained

(less disorder)

Lower damping? Higher damping?



Outline

• Gilbert damping: basics, applications, measurement 

• Highly crystalline iron (Fe) films as model systems

• Experimental results on Gilbert damping 

• Mechanism for observed Gilbert damping & 

comparison with published calculations

B. Khodadadi, SE. Phys. Rev. Lett. 124,157201 (2020)
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Room-temperature Gilbert damping
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Gilbert damping parameter meas vs T 
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MgO/Fe: αmeas ≈ 0.0038

MAO/Fe: αmeas ≈ 0.0043 

broadband FMR at low temperatures

MgO/Fe: αmeas ≈ 0.0055

MAO/Fe: αmeas ≈ 0.0078 

MgO/Fe: αmeas ≈ 0.0061

MAO/Fe: αmeas ≈ 0.0093 

• Damping increases with decreasing temperature

• At low T, damping is greater for MAO/Fe



Gilbert damping parameter meas vs T 
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Less scattering (better crystallinity, lower T)

→ higher damping!

…Why?



Damping due to eddy currents?

As magnetization M precesses in 

conductive film, some energy may 

be dissipated via eddy currents

𝛼eddy~σ(𝑇)

𝜕𝑀

𝜕𝑡
~
𝜕Φ𝐵

𝜕𝑡
~𝐼eddy

lower T 

→ higher conductivity σ in Fe

→ more eddy currents 

→ higher eddy-current damping 𝛼eddy?

M



T dependence of conductivity
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conductivity σ 𝑇resistivity ρ 𝑇

• Conductivity σ increases significantly at lower T

• Low-T conductivity σ of MAO/Fe is ≈1.2x greater  

than MgO/Fe

MAO/Fe MgO/Fe

ρ 𝑇 =
1

σ 𝑇

Can eddy-current damping 𝛼eddy account for 

“less scattering = high damping”?



Accounting for eddy-current damping
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Calculated eddy-current damping 𝛼eddy

Eddy current damping does not account for 

the entire T dependence of damping

J M Lock, Br. J. Appl. Phys. 17, 1645 (1966)



Origin of Gilbert damping in epi-Fe?
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Why higher damping for

cleaner Fe at low T ?!



Outline

• Gilbert damping: basics, applications, measurement 

• Highly crystalline iron (Fe) films as model systems

• Experimental results on Gilbert damping 

• Mechanism for observed Gilbert damping & 

comparison with published calculations



Resistivity-like damping

𝛼 ∝
1

𝜏𝑚
∝ 𝜌

more scattering 

→ higher damping

electron momentum 

relaxation time

Theory: origin of Gilbert damping 
in metals

B. Heinrich, et al. J. Appl. Phys. 50, 7726 (1979)

K. Gilmore, Y. U. Idzerda, & M.D. Stiles, Phys. Rev. Lett. 99, 027204 (2007)

magnetic 

precession

spin-polarized

electrons
dissipative spin 

scattering



Conductivity-like dampingResistivity-like damping

less scattering

→ higher damping

𝛼 ∝ 𝜏𝑚 ∝ 𝜎𝛼 ∝
1

𝜏𝑚
∝ 𝜌

more scattering

→ higher damping

?

electron momentum 

relaxation time

Theory: origin of Gilbert damping 
in metals

B. Heinrich, et al. J. Appl. Phys. 50, 7726 (1979)

K. Gilmore, Y. U. Idzerda, & M.D. Stiles, Phys. Rev. Lett. 99, 027204 (2007)

magnetic 

precession

spin-polarized

electrons
dissipative spin 

scattering



ky

kx

Fermi surface: highest energy states 

occupied by electrons, when the metal 

is at equilibrium

Conductivity-like damping from 
“breathing Fermi surface”

Cartoon inspired by J. M. Shaw, IEEE DL 2019



ky

kx

ky

kx

As magnetization precesses, 

coupling between magnetization & electronic/orbital 

structure (spin-orbit coupling) distorts Fermi surface 

Conductivity-like damping from 
“breathing Fermi surface”

Cartoon inspired by J. M. Shaw, IEEE DL 2019



ky

kx

As magnetization precesses, 

coupling between magnetization & electronic/orbital 

structure (spin-orbit coupling) distorts Fermi surface 

Conductivity-like damping from 
“breathing Fermi surface”

ky

kx

electrons holes

Non-equilibrium electron-hole pairs 

are generated
Cartoon inspired by J. M. Shaw, IEEE DL 2019



Breathing Fermi surface model

ky

kx

ky

kx

electrons holes

Non-equilibrium electron-hole pairs survive 

for lifetime ~m, until annihilated by scattering

longer non-equilibrium electron-hole pairs survive 

→ further deviation from equilibrium

→ more energy dissipated when they annihilate

conductivity-like damping:

less frequent electronic scattering (longer m) 

→ higher damping



Analogy for damping mechanisms…

conductivity-like damping:

less frequent scattering 

→ higher damping

scattering = reminders (nagging)
damping = stress that you feel

resistivity-like damping:

more frequent scattering 

→ higher damping

too much nagging:
more reminders 
→ higher stress

procrastinating too much:
not enough reminders 
→ higher stress

https://sites.google.com/a/vt.edu/emori/blurbs/pumping-iron

electrons 
“procrastinating”

https://sites.google.com/a/vt.edu/emori/blurbs/pumping-iron


A general theoretical model

→ Gilbert damping parameter  can be computed from realistic 

band structure of ferromagnetic metal crystal (e.g., BCC Fe)  

Many calculation results available:
K. Gilmore, Y. U. Idzerda, & M.D. Stiles, Phys. Rev. Lett. 99, 027204 (2007);

A. A. Starikov, et al. Phys. Rev. Lett. 105, 236601 (2008);

Y. Liu, et al. Phys. Rev. B. 84, 014412 (2011);

S. Mankovsky, et al., Phys. Rev. B 87, 014430 (2013);

E. Barati, et al. EPJ Web Conf. 40, 18003 (2013);

T. Qu & R. H. Victora, J. Appl. Phys. 115, 17C506 (2014);

A. A. Starikov et al. Phys. Rev. B 97, 214415 (2018);

…

…But no experiment confirming predictions for Fe

(until 2020) 

resistivity-like damping conductivity-like damping 

+
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G
ilb

e
rt

 d
a
m

p
in

g
 p

a
ra

m
e
te

r

T [K]

Comparison with published calculations 

Calculations incorporate 0.1% vacancies 

in BCC Fe to simulate small concentration 

of defects

Good quantitative agreement 

with MAO/Fe



40+ year old mystery resolved!

1974:

Conductivity-like damping reported 

for bulk crystals of Co and Ni 



40+ year old mystery resolved!

1974:

Conductivity-like damping reported 

for bulk crystals of Co and Ni 

…but not Fe!

Is conductivity-like damping 

(intraband scattering) even real?



40+ year old mystery resolved!

1974:

Conductivity-like damping reported 

for bulk crystals of Co and Ni 

…but not Fe!
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2020:

Conductivity-like damping also 

present in Fe

perhaps enabled by 

cleaner Fe samples, 

more reliable FMR



Summary

First experimental evidence of intrinsic conductivity-like 

Gilbert damping in elemental ferromagnetic metal films

(Less scattering can lead to higher damping.)

For low-T applications (e.g., quantum information technologies), 

some disorder may reduce loss/improve coherence. 

0 50 100 150 200 250 300
0.000

0.002

0.004

0.006

0.008

G
ilb

e
rt

 d
a

m
p

in
g

 p
a

ra
m

e
te

r

T [K]

MAO/Fe

MgO/Fe

Contact: Satoru Emori semori@vt.edu B. Khodadadi, … SE. Phys. Rev. Lett. 124,157201 (2020)
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