Pumping Iron: Revealing Counterintuitive Mechanisms of Magnetization Dynamics

Satoru Emori Virginia Tech <u>semori@vt.edu</u>

IEEE Magnetics Society Distinguished Lecture Club Español de Magnetismo (CEMAG) 8th November, 2024

IEEE Magnetics Society

conferences

MMM Intermag Magnetic Recording Conference (TMRC) Magnetic Frontiers

community programs

Magnetics Summer School

Students in Magnetism Women in Magnetism

. . .

If you're doing research in magnetism, please consider becoming an IEEE Magnetics Society member!

Where is Virginia Tech?

What's it like around Virginia Tech?

Downtown Blacksburg

McAfee Knob

Rising Silo Brewery

Cascades National Recreation Trail

Dixie Caverns

Emori Lab members

Rachel Maizel (current PhD student) Galen Street (current PhD student) Omolara Bakare (current PhD student) Sachli Abdizadeh (current PhD student) Muhammad Zubair (current PhD student)

Behrouz Khodadadi (former postdoc)

Shuang Wu (former postdoc)

Youngmin Lim (former PhD student) David Smith (former PhD student)

Collaborators

<u>Virginia Tech</u> Jean Heremans, Zijian Jiang, **Dwight Viehland**, Min Gao, Jie-Fang Li, Marc Michel, Jing Zhao

all FMR measurements in this presentation

University of Alabama

Tim Mewes, Claudia Mewes, Anish Rai, Bhuwan Nepal, Arjun Sapkota, Abhishek Srinivasta, **Adam Hauser**, Sujan Budhathoki

<u>University of Virginia</u> **Prasanna Balachandran,** Timothy Hartnett

<u>Advanced Light Source</u> Christoph Klewe, Padraic Shafer

NIST Center for Neutron Research Alexander Grutter, Purnima Balakrishnan

ISIS Neutron and Muon Source Andrew Caruana, Christy Kinane

"Pumping Iron"?

exciting magnetization in ferromagnetic material (e.g., thin film of iron) with microwave, etc.

"Pumping Iron"?

exciting magnetization in ferromagnetic material (e.g., thin film of iron) with microwave, etc.

Outline

- Gilbert damping: basics, applications, measurement
- Highly crystalline iron (Fe) films as model systems
- Experimental results on Gilbert damping
- Mechanism for observed Gilbert damping & comparison with published calculations

Outline

- Gilbert damping: basics, applications, measurement
- Highly crystalline iron (Fe) films as model systems
- Experimental results on Gilbert damping
- Mechanism for observed Gilbert damping & comparison with published calculations

B. Khodadadi, SE. Phys. Rev. Lett. 124,157201 (2020)

Magnetic precession

Magnetization precesses about effective magnetic field H_{eff}

(precessing top)

Gilbert damping

Low Gilbert damping for applications

lower damping = lower loss

energy-efficient information/signal processing

http://cspin.umn.edu/news/newsletters/newsletter_aug2014.html

Low Gilbert damping for applications

lower damping = lower loss

energy-efficient information/signal processing

spin wave propagation (wave computing)

https://staff.aist.go.jp/v.zayets/spin3_47_exchange.html

http://cspin.umn.edu/news/newsletters/newsletter_aug2014.html

mechanisms of damping not well understood... even in seemingly 'simple' magnetic materials

How to measure Gilbert damping

How to measure Gilbert damping

Gilbert damping mechanism?

intuitive expectation:

Can we identify mechanisms of Gilbert damping experimentally?

Outline

- Gilbert damping: basics, applications, measurement
- Highly crystalline iron (Fe) films as model systems
- Experimental results on Gilbert damping
- Mechanism for observed Gilbert damping & comparison with published calculations

Epitaxial BCC Fe: Simple model system

Epitaxial film:

highly crystalline film grown on crystal substrate

J. R. Arthur, Surf. Sci. 500, 189 (2002)

BCC (body-centered cubic): crystal structure of solid Fe

Advantages:

- simple single element!
- commercially available latticematched substrates
- epitaxial films: straightforward to compare with theory

Epitaxial BCC Fe: Simple model system

substrate held at 200 °C

Fe thin films grown by sputter deposition

http://www.ajaint.com/what-is-sputtering.html

Model systems: oxide-substrate/epi-Fe

Inspired by A. Lee et al. Nat. Commun. 8, 234 (2017)

Epitaxy of Fe films

X-ray diffraction confirms epitaxial growth; no secondary phases observed

Epitaxy of Fe films

MAO/Fe exhibits better crystallinity, smoother interfaces (narrower peak & pronounced thickness fringes) than MgO/Fe

Epitaxy of Fe films

MAO/Fe exhibits better-aligned crystallites (narrower rocking curve) than MgO/Fe

Hypothesis

coherently strained (less disorder)

relaxed (more disorder)

Outline

- Gilbert damping: basics, applications, measurement
- Highly crystalline iron (Fe) films as model systems
- Experimental results on Gilbert damping
- Mechanism for observed Gilbert damping & comparison with published calculations

Room-temperature Gilbert damping

Room-temperature Gilbert damping

Room-temperature Gilbert damping

Gilbert damping parameter α_{meas} vs T

broadband FMR at low temperatures

- Damping increases with decreasing temperature
 - At low T, damping is greater for MAO/Fe

Gilbert damping parameter α_{meas} vs T

Less scattering (better crystallinity, lower T) \rightarrow <u>higher</u> damping!

...Why?

Damping due to eddy currents?

As magnetization *M* precesses in conductive film, some energy may be dissipated via <u>eddy currents</u>

$$\frac{\partial \vec{M}}{\partial t} \sim \frac{\partial \Phi_B}{\partial t} \sim I_{\text{eddy}}$$

lower T \rightarrow higher conductivity σ in Fe \rightarrow more eddy currents \rightarrow higher eddy-current damping α_{eddy} ? $\alpha_{eddy} \sim \sigma(T)$

T dependence of conductivity

- Conductivity σ increases significantly at lower T
- Low-T conductivity σ of MAO/Fe is ≈1.2x greater than MgO/Fe

Can eddy-current damping α_{eddy} account for "less scattering = high damping"?

Accounting for eddy-current damping

Calculated eddy-current damping α_{eddy}

J M Lock, Br. J. Appl. Phys. 17, 1645 (1966)

Eddy current damping does **not** account for the entire T dependence of damping

Origin of Gilbert damping in epi-Fe?

Outline

- Gilbert damping: basics, applications, measurement
- Highly crystalline iron (Fe) films as model systems
- Experimental results on Gilbert damping
- Mechanism for observed Gilbert damping & comparison with published calculations

Theory: origin of Gilbert damping in metals

B. Heinrich, *et al. J. Appl. Phys.* **50**, 7726 (1979) K. Gilmore, Y. U. Idzerda, & M.D. Stiles, *Phys. Rev. Lett.* **99**, 027204 (2007)

Resistivity-like damping

 $\alpha \propto \frac{1}{\tau} \propto \rho$

electron momentum relaxation time

more scattering → higher damping

Theory: origin of Gilbert damping in metals

B. Heinrich, *et al. J. Appl. Phys.* **50**, 7726 (1979) K. Gilmore, Y. U. Idzerda, & M.D. Stiles, *Phys. Rev. Lett.* **99**, 027204 (2007)

Resistivity-like damping

 $\alpha \propto \frac{1}{\tau} \propto \rho$

Conductivity-like damping

) $\propto \sigma$

 $\alpha \propto (\tau_m)$

electron momentum relaxation time

less scattering → higher damping

Conductivity-like damping from "breathing Fermi surface"

Fermi surface: highest energy states occupied by electrons, when the metal is at <u>equilibrium</u>

Conductivity-like damping from "breathing Fermi surface"

As magnetization precesses, coupling between magnetization & electronic/orbital structure (spin-orbit coupling) distorts Fermi surface

Conductivity-like damping from "breathing Fermi surface"

As magnetization precesses, coupling between magnetization & electronic/orbital structure (spin-orbit coupling) distorts Fermi surface

Non-equilibrium electron-hole pairs are generated

Breathing Fermi surface model

longer non-equilibrium electron-hole pairs survive \rightarrow further deviation from equilibrium

 \rightarrow more energy dissipated when they annihilate

conductivity-like damping:

less frequent electronic scattering (longer τ_m) → higher damping

Analogy for damping mechanisms...

scattering = reminders (nagging)
damping = stress that you feel

resistivity-like damping: more frequent scattering

 \rightarrow higher damping

conductivity-like damping:
 less frequent scattering
 → higher damping

procrastinating too much:
 not enough reminders
 → higher stress

WWW. PHDCOMICS. COM

https://sites.google.com/a/vt.edu/emori/blurbs/pumping-iron

A general theoretical model

 \rightarrow Gilbert damping parameter α can be computed from realistic band structure of ferromagnetic metal crystal (e.g., BCC Fe)

Many calculation results available:

K. Gilmore, Y. U. Idzerda, & M.D. Stiles, Phys. Rev. Lett. 99, 027204 (2007);
A. A. Starikov, et al. Phys. Rev. Lett. 105, 236601 (2008);
Y. Liu, et al. Phys. Rev. B. 84, 014412 (2011);
S. Mankovsky, et al., Phys. Rev. B 87, 014430 (2013);
E. Barati, et al. EPJ Web Conf. 40, 18003 (2013);
T. Qu & R. H. Victora, J. Appl. Phys. 115, 17C506 (2014);
A. A. Starikov et al. Phys. Rev. B 97, 214415 (2018);

...But no experiment confirming predictions for Fe (until 2020)

Phenomenological fit

Phenomenological fit

Comparison with published calculations

PHYSICAL REVIEW B 87, 014430 (2013)

First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys

S. Mankovsky,¹ D. Ködderitzsch,¹ G. Woltersdorf,² and H. Ebert¹

¹University of Munich, Department of Chemistry, Butenandtstrasse 5-13, D-81377 Munich, Germany ²Department of Physics, Universität Regensburg, 93040 Regensburg, Germany (Received 2 November 2012; published 28 January 2013)

A method for the calculations of the Gilbert damping parameter α is presented, which, based on the linear response formalism, has been implemented within the fully relativistic Korringa-Kohn-Rostoker band structure method in combination with the coherent potential approximation alloy theory. To account for thermal

Calculations incorporate 0.1% vacancies in BCC Fe to simulate small concentration of defects

Good quantitative agreement with MAO/Fe

40+ year old mystery resolved!

1974: Conductivity-like damping reported for <u>bulk crystals</u> of Co and Ni

40+ year old mystery resolved!

1974: Conductivity-like damping reported for <u>bulk crystals</u> of Co and Ni ...**but not Fe**!

D M Edwards

40+ year old mystery resolved!

2020: 1974: **Conductivity-like damping also** Conductivity-like damping reported present in Fe for bulk crystals of Co and Ni ...but not Fe! perhaps enabled by λ vs T for Fe, Co, Ni and Ni-Cu Alloys 0.008 cleaner Fe samples, 15 × 10⁸ more reliable FMR Pure Ni Landau Relaxation Frequency $\lambda~(\text{sec}^{-1})$ 0.006 + 0.17 wt % Cu 10 さ 0.004 5 σ-like Ni + 5 wt % Cu 0.002 hcp Co (Present Data) o-like Data of Heinrich and Frait) °ò 200 300 400 500 600 700 800 900 0.000 100 TEMPERATURE (K) 50 100 150 200 250 300 0

T [K]

Summary

First experimental evidence of intrinsic **conductivity-like Gilbert damping** in elemental ferromagnetic metal films (Less scattering can lead to higher damping.)

For low-T applications (e.g., quantum information technologies), some disorder may reduce loss/improve coherence.

B. Khodadadi, ... SE. Phys. Rev. Lett. **124**,157201 (2020) Contact: Satoru Emori <u>semori@vt.edu</u>