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Basic properties of the neutron
• Neutron is an elementary particle, which has been discovered by James 

Chadwick in 1932  (Nobel Prize 1935)
• mass m = 1.675 × 10-27 kg  (-> de Broglie wavelength in Å regime; allows to 

study static and dynamic structure of matter)
• spin angular momentum of S = ±½ ħ and associated magnetic dipole moment 

of µ = - 1.913 µN (-> allows to probe magnetism)
• zero net electrical charge  (-> weak interaction; interpretation of scattering data 

in terms of Born approximation)
• average lifetime of a free neutron is ∼ 886 seconds  (long enough)

→ neutrons are extremely attractive for research purposes, in particular, for 
investigating the structure and dynamics of matter on a wide range of length and 
time scales



Classification of research neutrons

H. Schober, J. Neutron Research 17, 109 (2014).

E = kT = ½ m v2

λ = h/(mv)
k = 2π/λ
p = ħk



Neutron-Matter Interaction Mechanisms

 Neutrons interact with atomic nuclei via very short-range (∼ fm) forces
 Neutrons also interact with unpaired electrons via a magnetic dipole interaction

R. Pynn, in Neutron 
Scattering: A Primer, Los 
Alamos Science (1990).



• In general we consider the scattering process of neutrons by a sample during which the 
sample state changes from s0 to s1 (e.g., via the excitation or annihilation of a phonon 
or magnon) while the state of neutron changes from k0, σ0 to k1, σ1

• For elastic scattering (s0 = s1) and ignoring the spin degree of freedom of the neutron 
(σ), the cross section is given by (only direction of neutron beam changes)

• where Vint denotes the neutron-matter interaction potential (to be specified)
• Born approximation: incoming and outgoing neutron waves are in a plane-wave state
• In Born approximation, the matrix element reduces to the Fourier transform of Vint

The cross section: Born approximation

Fermis Golden Rule

transition rate



Basic interactions of research neutrons with matter

nuclear scattering length (bound); b ∼ a few fm = 10-15 m
b″ describes absorption (3He, B, Cd, Gd); for most materials b″ << b′

Nuclear 
Scattering

Modeled by Fermi Pseudo potential; very short range; gives correct result in first 
Born approximation; Neutron wavelength (a few Å) >> size of the nucleus
-> isotropic s-wave scattering



Basic interactions of research neutrons with matter
 The magnetic moment of the neutron µn interacts with the magnetic field B, 

which is produced by the spin (BS) and orbital motion (BL) of the electrons

Magnetic 
Scattering

 Dipole-dipole interaction (long-range and anisotropic)



Elastic Magnetic (Small-Angle) Neutron Scattering

… final result

atomic magnetic scattering length: a few fm = 10-15 m



Elastic Magnetic (Small-Angle) Neutron Scattering

 is called the magnetic interaction or 
Halpern-Johnson vector

 Embodies anisotropic character of 
magnetic neutron scattering due to 
dipole-dipole interaction

 Only the component of M which is 
perpendicular to the scattering 
vector q contributes to the magnetic 
neutron scattering cross section

�𝐐𝐐



Elastic Magnetic (Small-Angle) Neutron Scattering
For a single magnetic domain
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 SANS probes nuclear (structural) and magnetic inhomogeneities in the 
bulk and on the mesoscale (∼ 1 nm up to 1000 nm)

 2ψ < 10° small angles; 5Å < λ < 20Å → 0.001 nm-1 < q < 1 nm-1

SANS setup



https://kur.web.psi.ch/sans1/sans/sans10.jpg

SANS1 @ PSI

Sampe holder

 SANS beamtime is given based on a peer-review 
process; 1-2 pages proposal; 6-12 month lead time



Richness of magnetic SANS
 plethora of angular anisotropies and complex interactions

A. Michels et al., PRB 74, 134407 (2006).

NANOPERM Nd-Fe-B

É.A. Périgo et al., 
NJP 16, 123031 (2014).

D. Honecker et al., EPJ B 76, 209 (2010).

Fe-based alloys



 Magnetic SANS can be described within a continuum 
approach: relevant quantity is the magnetization vector field

S. Erokhin, General Numerics Research Lab

 SANS wavelength above Bragg 
cutoff for many crystalline 
materials → no information on 
discrete atomic structure of 
matter

 Discrete atomistic or even 
purely quantum mechanical 
calculations limited to very 
small systems



Elastic Magnetic Neutron Scattering Cross Section

 Central quantity is the Fourier transform of M

Halpern-Johnson 
vector



When the applied 
field is perpendicular 
to the incoming 
neutron beam

S. Erokhin et al., PRB 92, 014427 (2015).

Elastic Magnetic Neutron Scattering Cross Section



 Origin of diffuse magnetic SANS?
Why do we observe a magnetic 
SANS signal?



 Magnetic SANS is due to nanoscale spatial 
variations in the magnitude and/or orientation 
of M(r)

Origin of magnetic SANS

S. Erokhin et al., PRB 85, 024410 (2012).



 Magnetic SANS is due to nanoscale spatial 
variations in the magnitude and/or orientation of the 
magnetization vector field

What is the origin of magnetic SANS?

(a) saturated homogeneous ferromagnet
→  M = {0, 0, Ms}, where Ms = constant 

no magnetic SANS signal

H0



What is the origin of magnetic SANS?

 For case (b), analysis of magnetic SANS cross section provides information 
on the size (distribution) and shape (form factor), on the contrast (∆M)2, and on 
the interaction potential between „particles“ and „matrix“ (structure factor)
 However, not really magnetic SANS, scalar function Ms(r), can be mapped 
onto nuclear SANS problem

magnetic scattering contrast
(∆M)2 = (    -       )2 = (Ms

p - Ms
m)2

(b) saturated inhomogeneous ferromagnet
→  M = {0, 0, Ms}, where Ms = Ms(x, y, z)

H0

magnetic SANS signal

= Fourier transform of Ms(r)



(c) nonsaturated inhomogeneous ferromagnet
→  M = {Mx(r), My(r), Mz(r)}

 In the general case (iii), 
all three magnetization
components determine
the magnetic SANS cross 
section

H0

What is the origin of magnetic SANS?

→ static micromagnetism



Magnetic SANS Theory

D. Honecker and A. Michels, Phys. Rev. B 87, 224426 (2013); D. Mettus and A. Michels, J. Appl. Cryst. 48, 
1437 (2015); K.L. Metlov and A. Michels, Sci. Rep. 6, 25055 (2016); A. Michels et al., PRB 94, 054424 (2016).



Micromagnetic Theory: balance of torques
[L. Landau and E. Lifschitz (1935); W.F. Brown Jr. (1940)]

δEtot = 0

exchange field magnetostatic
field + Zeeman

anisotropy field DMI field

• Brown’s equations of micromagnetics (Euler-Lagrange Eqs.) are 
a set of nonlinear partial differential equations with complex 
boundary conditions

• Numerical micromagnetics

Necessary equilibrium condition



High-field limit: solution for Fourier coefficients

A. Michels et al., PRB 94, 054424 (2016). ,...),,,,,(~~
,,,, KMAHqMM szyxzyx θ=

based on (cubic symmetry)



Analysis of magnetic 
SANS data



D. Honecker and A .Michels, PRB 87, 224426 (2013).

B0 = 0.01 T B0 = 0.2 T B0 = 1 T B0 = 10 T

Theory

Experiment (Fe based nanocomposite)

D. Honecker et al., PRB 88, 094428 (2013).

q

H0

θ

Angular Anisotropy of SANS pattern



Anisotropy of SANS pattern: flux-closure at nanoscale
(due to ∇ ⋅ M → 0)

D. Honecker and A .Michels, 
PRB 87, 224426 (2013).

Theory: spike anisotropy Experiment (Nd-Fe-B)

É.A. Périgo et al., NJP 16, 123031 (2014).
M. Bersweiler et al., PRB 108, 094434 (2023).



Micromagnetic data analysis (Nd-Fe-B nanocomposite)

m/J105.12 12−×≅A
exchange-stiffness constant plus information about

 magnetic anisotropy field
 magnetostatics
 correlation lengths
 ...J.-P. Bick et al., APL 102, 022415 (2013).

J.-P. Bick et al., APL 103, 122402 (2013).



 Nanomagnets 
exhibit non-
exponential 
long-range 
decay of 
correlationsJ.-P. Bick et al., 

APL 102, 022415 (2013).

Real-space analysis: correlation function



Hc = 0.55 T

particle size
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micromagnetic model

R = defect size (e.g., R ≅ particle radius)
H* = effective magnetic field
Note: for H = 0 and H* = HK = 2K/Js

K
ARHlC +=)(

 fit to data: R = 10.9 nm and µ0H* = 0.60 T 
 at remanent state: penetration depth of spin disorder into 

Fe3B phase ∆lC = lC(H) − R ~ 5-6 nm 

Magnetization reversal: Correlation length
Nd-Fe-B nanocomposite

J.-P. Bick et al., 
APL 102, 022415 (2013).



Selected Results



 Signature of DMI in magnetic 
SANS cross section?



DMI relevant in the context of skyrmion physics

• intrinsic DMI due to inversion-asymmetric crystal-field environment
(MnSi, FeGe, Cu2OSeO3, Heusler-type alloys, …)
• important for the stabilization of skyrmion lattices

Mühlbauer, Pfleiderer et al., Science (2009).



Microstructural-defect-induced DMI

• DMI is operative at defect sites due to the local breaking of structural
inversion symmetry; relevant for disordered polycrystalline magnets
and spin glasses (Fert and Levy, PRL 1980; Plakhty, Fedorov et al., 
PRB 2001; Grigoriev et al., PRL 2008)

• local chiral DMI couplings, present even in highly symmetric lattices



Defect-induced DMI: SANS Theory

polarization-independent

polarization-dependent

Chiral function



A. Michels et al., PRB 94, 054424 (2016).

Chiral function

�𝐇𝐇𝒑𝒑(𝐪𝐪): Fourier transform of magnetic anisotropy field Hp(r)
�𝑴𝑴𝒔𝒔(𝐪𝐪): Fourier transform of spatially-dependent local saturation 
magnetization Ms(r)

Defect-induced DMI: SANS Theory



Defect-induced DMI in nanomagnets
 Nanocrystalline Terbium (large grain-boundary density ∝ 1/D)

Terbium
grain size: 
D = 20 nm

Defects (e.g., interfaces, dislocations) reduce magnetization
A. Michels et al., PRB 99, 014416 (2019).



Defect-induced DMI: Experiment

nano Tb

Difference between “spin up” and “spin down” cross 
sections: only polarization-dependent terms survive



Defect-induced DMI: Experiment

D = 0.45 ± 0.07 mJ/m2
average along horizontal direction

A. Michels et al., PRB 99, 014416 (2019).



Defect-induced DMI: Real-space structure
 Shaded circular  areas: 

defect sites with different 
Ms and anisotropy field

 M(r) is asymmetric wrt
the center of the defect

 Result of DMI, which 
introduces chiraltity into 
the sample

 Largest gradients in spin 
distribution near/at defect 
sites (interfaces)

 D-value from SANS 
experiment reflects 
emerging DMI strength 
at interfaces

Result of micromagnetic theory

H0 || ez

A. Michels et al., PRB 99, 014416 (2019).



 Scaling in magnetic SANS



Scaling in magnetic SANS
• lC(H) is a measure for size 
of inhomogeneously
magnetized regions around
defects

• magnetization response
similar at different fields H

• existence of scaling?

• Ansatz

V. Rai and A. Michels, PRB 112, 144403 (2025).

exchange length

defect size



Scaling in magnetic SANS

• horizontal scaling
 lC describes scaling 

behavior in the 
mesoscopic magnetic 
microstructure of bulk 
ferromagnets



 Signatures of hopfions



SANS signature of hopfions

K.L. Metlov, Physica D 443, 133561 (2023).

Localized 3D topological object in an unbounded bulk magnet

Contain a circular outer antivortex tube wrapped around a circular
inner vortex tube (type I), and vice versa for type II

Type I Type II



Spin-flip SANS and correlation function

qz

 Spin-flip SANS exhibits
saturated-spheres-like 
scattering

 With a double-peak radial 
correlation function and a 
zero crossing produced by 
vortex and antivortex tubes

 Dipolar interaction 
destabilizes hopfions
(MnSi is promising
candidate material among
skyrmion hosts)

K.L. Metlov and A. Michels, PRB 
109, L220408 (2024).
K.L. Metlov,
Physica B 695, 416498 (2024).



Spin-disorder-induced anisotropy in polarized SANS

I. Titov et al., Phys. Rev. Lett. 135, 196706 (2025).

Experiment Theory

Difference 
between 
spin-up and 
spin-down 
SANS



Conclusions
 Magnetic Neutron Scattering is important technique in physics and materials 
science to study dynamics and structure of magnetic materials

 Magnetic SANS in particular allows one to study mesoscale magnetization 
structure in the bulk of magnets (resolution range: ∼ 1nm-20µm)

 Magnetic SANS + micromagnetic theory is useful tool for quantitative analysis of 
bulk magnetic materials (exchange constant, magnetic anisotropy and 
magnetostatic fields, correlation length, ...)

 Dipolar interaction results in angular anisotropies; must be taken into account
for fundamental understanding of magnetic SANS

 DMI in defect-rich materials results in asymmetry of polarized SANS; effect is 
generic to polycrystalline magnets

 Existence of scaling; hopfion signatures
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