

UNIVERSIDAD DEL PAIS VASCO EUSKAL HERRIKO UNIBERTSITATEA

Magnetic nanoparticles from bacteria

M.L. Fdez-Gubieda, A. Muela, J. Alonso, A. García-Prieto, L. Olivi, R. Fernández-Pacheco, J.M. Barandiarán

Club de Magnetismo, Noviembre 2013

Magnetic nanoparticles

Urs Hafeli, Conference Magnetic Carriers, Minneapolis, Mayo 2012.

Magnetic nanoparticles

۲

» Applications

- Catalysis
- Data storage
- Energy storage

Biomedical applications:

- Diagnostic
- Therapy
- Analysis

» Preparation methods

- Chemical routes
- Mechanical routes: ball milling
- Photolitography

- Narrow Size distribution
- Well define shape
- Coatings

.

Biosynthesis: Magnetic Nanoparticles

living organisms

Name	Composition	Magnetic order	
Hydroxides			
Ferrihydrite	FeOOH.nH ₂ O	AFM(?)	Fe storage (Ferritine core)
			Plants, animals
Goethite	α–FeOOH	AFM, weak FM	Limpets
Lepidocrocite	γ–FeOOH	AFM(?)	Chiton
Oxides			
Greigite	Fe ₃ S ₄	ferrimagnet	Bacteria. Magnetotaxia
Magnetite	Fe ₃ O ₄	ferrimagnet	Microrganisms to humans •Magneto-reception •Magnetotaxia

Biosynthesis: Magnetite Nanoparticles

Magnetoreception:

animal senses field direction, uses information to navigate (e.g., bird, salmon, bee, turtle)

beak NPs of magnetite

G. Fleissner, et al., J. Comparative Neurol. (2003). CV Mora et al.; Nature (2004)

Magnetic information is transduced into neuronal impulses by using a magnetite-based magnetoreceptor

Biosynthesis: Magnetite Nanoparticles

Magnetoreception:

animal senses field direction, uses information to navigate (e.g., bird, salmon, bee, turtle)

beak NPs of magnetite

Christoph Daniel Treiber et al; NATURE, VOL 484, 19 APRIL 2012, 367

Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons

PIGEONS

Biosynthesis: Magnetite Nanoparticles

Magnetoreception:

animal senses field direction, uses information to navigate (e.g., bird, salmon, bee, turtle)

Biosynthesis: Magnetite Nanoparticles

Degenerative diseases: Alhzeimer, Parkinson Human brain

TEM micrograph of biogenetic **magnetite** extracted from the human **hippocampus**. J. Dobson, FEBS Let 496 1 (2001)

Magnetotactic Bacteria

Electron micrograph of thin-sectioned magnetic cells of strain MS-1. Science 1978

Bellini, S. Thesis, Su di un Particolare Comportamento di Batteri d'Acqua Dolce. University of Pavia, Italy, 1963

magnetic nanoparticles are surrounded by a lipid bilayer membrane: Magnetosomes

Magnetotactic bacteria

Different magnetotactic bacteria species

Shape, size, type of magnetosomes are specific of the bacteria species

Magnetotactic bacteria

W.E.G. Müller (ed.), Molecular Biomineralization

Magnetosomes

magnetic nanoparticles surrounded by a lipid bilayer membrane: Magnetosomes

Shape, size, type of magnetosomes are specific of the bacteria species

Magnetic nanoparticle: Fe₃O₄ (magnetite), Fe₃S₄ (greigite)

Shape: cubooctahedral, prismatic, arrowhead

Size: 40 - 120 nm

R. Frankel and R. Blakemore, Phil. Trans. Roy. Soc. London B 304, 567–574 (1984).

J. Meurig Thomas, ACCOUNTS OF CHEMICAL RESEARCH, 2008

Introduction

Magnetic induction maps recorded using off-axis electron holography from the same particle, showing remanent magnetic states at 300K and at 90 K

Magnetotaxis

D.A. Bazylinski and R. Frankel, Nature Reviews (2004)

compass needle

Aim of the work

• Growth Magnetotactic bacteria: *Magnetospirillum gryphiswaldense* and isolated the magnetosomes

• Biomineralization process: is the controlled formation of solid inorganic compounds by biological system

Magnetospirillum gryphiswaldense

Magnetospirillum gryphiswaldense Strain: MRS-1

Polyphosphate

Chain of magnetosomes

Spirillum-shaped bacteria

Cell length: $3,5\pm0,8 \ \mu m$ Chain length: $1,1\pm0,5 \ \mu m$ Magnetosome size: $45\pm6 \ nm$ N° magnetosomes in chain: ≈ 20

magnetite cubo-octahedral shape

-500 nm

TRANSMISSION ELECTRON MICROSCOPY

Philips EM208S 120 kV

MAGNETIC CHARACTERIZATION

BIOMEDICAL APPLICATION

Biomineralization process

A. Komeili et al., Science 311 (2006) 242

Electron microtomography

M. gryphiswaldense cultivated in iron-free medium 28°C, aerobic condition, 17 rpm

M. gryphiswaldense cultivated in iron-free medium 28°C, aerobic condition, 17 rpm Addition of Fe(III)-citrate 100 μ M

- TEM: to follow the formation of the magnetosomes chain
- Magnetic measurements: mass of magnetite
- X-ray absortion Near Edge Structure: Fe inorganic phases
- EXAFS spectroscopy: to follow the evolution of the structure

Biomineralization process

Transmission Electron Microscopy

become more

frequent

subchains.

and they are organized in

small subchains.

nanoparticles

bigger nanoparticles.

•Elettra Synchrotron (Trieste, Italy)

Biomineralization process

X- ray Absorption Near Egde Structure (XANES)

Pre-edge: from a shoulder to a well defined peak

Fe site

from a **centrosymmetric** (broad and low intensity pre-edge) to **non-centrosymmetric site** (narrow and more intense pre-edge peak)

Edge position: move 2 eV

Change in the oxidation state of the Fe atom

20 min

•Pure Fe³⁺ compound
•Fits with inorganic ferrihydrite

20 min

Ferrihydrite

core

Pure Fe³⁺ compound
Fits with inorganic ferrihydrite
But better with bioferrihydrite from ferritin-like protein cores

Ferritin protein: spherical protein shell, 12 nm in diameter, encapsulating a nanoparticle-sized core of ferrihydrite with a diameter of up to 8-9 nm

20 min

Pure Fe³⁺ compound
Fits with inorganic ferrihydrite
But better with bioferrihydrite from ferritin-like protein cores

Magnetite biomineralization starts from bacterial ferrihydrite

Use bacteria at **20 min (bio-ferrihydrite)** and at **72 h (biomagnetite)** as models to fit the rest of the samples:

Gel electrophoresis

Magnetic measurements

Magnetic characterization

The amount of magnetite increase with the Fe incubation-time

Not all the Fe is in magnetite

Magnetic analysis

EXAFS on the FeK-edge

Fluorescence and Transmission set up. T=100K

coordination number

100% ferrihydrite

70% ferrihydrite + 30% magnetite

30% ferrihydrite + 70% magnetite

100% magnetite

Crystallization scenarios

J. Baumgartner et al, Nature Materials (2013): agglomeration of primary particles

Biomineralization process

High-Resolution TEM (FEI Titan)

Where is the ferrihydrite?

20min: the sample with the highest proportion of ferrihydrate. We only observed few and small magnetite nanoparticle, \approx 9nm.

No amorphous bulk precursor

High-Resolution TEM (FEI Titan)

Where is the ferrihydrite?

Mammalian ferritin: ferrihydrite core of 5nm

bacterioferritin: ferrihydrite core lessdense than mammalian ferritinsbecause of their larger phosphorouscontent.Lower degree of crystalinity

micro-tomo

micro-tomo

agglomeration of

nanoparticules?

slices of 70nm

200 nm

Conclusions

• Magnetosomes are magnetic nanoparticles of high structural and chemical purity:

- Single domain (≈45nm)
- Well defined shape
- Narrow distribution size
- Covered by lipid bilayer membrane:
 - Biocompatible
 - Easy to functionalize
 - Avoid aggregation

Biomedical applications: hyperthermia, drug delivery

Biomineralization process: Ferrihydrite with the same structure of bacterioferritin cores

magnetite

- Two 1. Fe accumulated in the form of ferrihydrite
- **steps:** 2. Magnetite is rapidly biomineralize from ferrihydrite

M. Luisa Fdez-Gubieda et al, ACS Nano vol. 7 n.4 3297 (2013)

MAT2011-27573-C04

Thanks for your attention

UNIVERSIDAD DEL PAIS VASCO EUSKAL HERRIKO UNIBERTSITATEA