Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Francisco Rivadulla Cristina Hoppe Verónica Salgueirño Sueli Masunaga David Serantes Daniel Baldomir Arturo López-Quintela José Rivas

Workshop del Club Español de Magnetismo 14th November 2007 Santiago de Compostela

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Does a spin-glass phase exist below T_B in strongly interacting systems of NPs ?

VOLUME 75, NUMBER 22 P

PHYSICAL REVIEW LETTERS

27 NOVEMBER 1995

Aging in a Magnetic Particle System

T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan,* P. Nordblad, and P. Svedlindh Department of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Does a spin-glass phase exist below T_B in strongly interacting systems of NPs ?

VOLUME 67, NUMBER 19

PHYSICAL REVIEW LETTERS

4 NOVEMBER 1991

Dipole Interactions with Random Anisotropy in a Frozen Ferrofluid

Weili Luo,⁽¹⁾ Sidney R. Nagel,⁽¹⁾ T. F. Rosenbaum,⁽¹⁾ and R. E. Rosensweig⁽²⁾ ⁽¹⁾The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 ⁽²⁾Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, New Jersey 08801

The objective of this work

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

n = **0**, for dilute systems of monodisperse particles (stretched exponential)

 $n \approx 0.66$, for dilute systems of polydisperse particles (power-law)

ne objective of the non

Synthesis of monodisperse γ -Fe₂O₃

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Synthesis of monodisperse γ -Fe₂O₃

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Synthesis of (γ-Fe₂O₃)-polymer nanocomposites

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Are all polymeric matrices equally adequate for this study ?

Microscopic structure of (γ-Fe₂O₃)-polymer nanocomposites

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Microscopic structure of (γ-Fe₂O₃)-polymer nanocomposites

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Excellent dispersion in PVB !

Films of γ -Fe₂O₃ dispersed in PVB

Magnetic properties of (γ-Fe₂O₃)-polymer nanocomposites

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

 γ -Fe₂O₃ NPs from the same batch

Intrinsic evolution of T_B with interactions

Intrinsic evolution of T_B with interactions

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Ni NPs in amorphous SiO₂+C

From Sueli Masunaga

Intrinsic evolution of T_B with interactions

Intrinsic evolution of T_B with interactions

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Monte Carlo simulations

From David Serantes

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Increasing concentration of γ-Fe₂O₃ NPs

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Increasing concentration of γ-Fe₂O₃ NPs

nn = 24

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

n = 0, for dilute systems of monodisperse particles (stretched exponential)

 $n \approx 0.66$, for dilute systems of polydisperse particles (power-law)

 $n \ge 1$, for dense systems of particles (nonvanishing remanent M: spin-glass)

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Memory effects in concentrated γ -Fe₂O₃+ PVB composites

Spin-glass effects in dense magnetic systems

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Memory effects in dense magnetic systems

Verónica Salgueiriño-Maceira et al. Adv. Func. Mat. 2007 (in press)

Tuning the magnetic interactions

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Silica-coated Gold Nanoparticles

15 nm

15 nm

From Verónica Salgueiriño

Tuning the magnetic interactions

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Silica-coated Cobalt Nanoparticles

Tuning the magnetic interactions

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Fe_3O_4/γ - Fe_2O_3 Nanoparticles

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Can we go beyond the n = 1 limit ?

Increasing the effective density of magnetic "particles" using spontaneous phase segregation:

From the moderate to the very strong-interaction limit

W. Wu, et al. Nature Materials (2006)

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Why $(La_{0.25}Nd_{0.75})_{0.7}Ca_{0.3}MnO_3$?

1º- Large Clusters, slow relaxation

2º- T<T_c: Isolated FM clusters

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

 η_c : proximity to the doping-induced $1^{\rm st}$ order phase transition

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Precise magnetic field control of the particle size, opens a new path to investigate finite-size effects

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Reaching the spin-glass limit !!

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Conventional finite-size scaling

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Order parameter susceptibility and scaling analysis

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, et al.

Do we really need a new universality class of spin-glass?

(La,Nd) _{0.7} Ca _{0.3} MnO ₃	FeC particles ⁽¹⁾	Fe ₁₀ Ni ₇₀ P ₂₀ ⁽²⁾
α= -1.1(1)	-4.4	-1.3
$\beta = 0.3(1)$	1.2	0.5
$\gamma = 2.5(1)$	4.0	2.3
v = 1.05(3)	2.1	1.1

⁽¹⁾ Collective behavior of disordered magnetic systems

Tomas Jonsson, Ph.D. Thesis, Uppsala University (1998)

⁽²⁾ Non-linear susceptibilities of the amorphous spin-glass $Fe_{10}Ni_{70}P_{20}$

T. Taniquchi *et al.*, J. Phys. Soc. Japan **54**, 220 (1985)

Magnetic phase segregation in perovskites: Identification with magnetic nanoparticle systems

F. Rivadulla, M. A. López-Quintela, J. Rivas., Phys. Rev. Lett. **93**, 167206 (2004) C. Hoppe, F. Rivadulla, M. A. López-Quintela, J. Rivas, Journal of Nanoscience and Nanotechnology, (in press)