

New perspectives in Rare Earth metallic nanoparticles: Spin glass phases, Crystal fields and Kondo decoherence

Luis Fernández Barquín Dept. CITIMAC, Universidad de Cantabria (Santander, SPAIN)

<u>barquinl@unican.es</u>

Outline

I. Context: 3d-4f-Nanoparticles

II. RX₂ Nanoparticles

III. YbAl₃ NPs: Intro + Structure + Resistivity

NanoMag

I. Context: Nanoparticles (3d/4f-compounds)

Interest: Size effects, Surface Effects, Interaction & Core (disorder)-Shell Applications: Biomedicine, Fe-oxides (Review, QA Pankhurst et al., J Phys D (2003)) + Waste Management...

SCIENTIFIC REPORTS

Received: 13 December 2016 Accepted: 06 March 2017 Published: 11 April 2017

OPEN Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

P. Bender¹, L. K. Bogart², O. Posth³, W. Szczerba^{4,5}, S. E. Rogers⁶, A. Castro⁷, L. Nilsson^{7,8}, L. J. Zeng⁹, A. Sugunan¹⁰, J. Sommertune¹⁰, A. Fornara¹⁰, D. González-Alonso¹, L. Fernández Barquín¹ & C. Johansson¹¹

Figure 3. Results of the structural characterisation of the multi-core particles via SANS, SAXS and SLS. (a) The experimentally measured scattering intensities $I_{LANS}(q)$, $I_{AAXS}(q)$ and $I_{ud}(q)$. The static light scattering intensity was scaled by c_1 and c_2 , respectively. The reconstructed curves $I_1^{rec}(q)$, $I_2^{rec}(q)$, $I_{AAXS}^{rec}(q)$ and $I_{MAXS}^{rec}(q)$ were calculated for the distributions $\overline{p}_3(r)$, $\overline{p}_2(r)$, $\overline{p}_{3AXS}(r)$ and $\overline{p}_{5AXS}(r)$ from Fig. 3(b). (b) The pair distance distribution functions $\overline{p}_1(r)$, $\overline{p}_{3AXS}(r)$ and $\overline{p}_{5AXS}(r)$ determined by an indirect Fourier transform of $I_1(q)$, $I_2(q)$, $I_{AAXS}(q)$ and $I_{SXX}(q)$.

Figure 2. Simulated PDDFs. Comparison of simulated PDDFs for small angle scattering via neutrons $(P_{XXXX}^{see}(r))$ and X-rays $(P_{XXXX}^{see}(r))$ from a 120 nm poly(styrene) sphere with a 20 nm thick shell embedded in water, as well as the calculated profile of a homogeneous sphere with D = 160 nm (equation 3). Assumed scattering length densities for neutrons and X-rays are provided in Table 1.

Fe-oxide Nanoparticles CSIC05 (Puerto Morales)

CITIMAJ

UNIVERSIDAD DE CANTABRIA

Magnetotactic Bacteria (UPV/EHU) Alicia Muela, M.L. Fdez-Gubieda,...

Magnetospirillum gryphiswaldense strain MSR-1

Polyphosphate

Chain of magnetosomes cubo-octahedral shape

Spirillum-shaped

Fdez-Gubieda et al. ACS Nano 7, 3297–3305 (2013), Garcia Prieto et al. Nanoscale 8, 1088–1099 (2016). Cell length: 3,5±0,8 μm Chain length: 1,1±0,5 μm Magnetosome size: 45±6 nm № magnetosomes per chain: ≈20

-500 nm-

I. Context: Nanoparticles (3d/4f-compounds)

Interest: Size effects, Surface Effects, Interaction & Core (Disorder)-Shell

Applications: Biomedicine, Fe-oxides (Review, QA Pankhurst et al., J Phys D (2003)) + Waste Management...

TbAl₂: D. P. Rojas et al., Mat Res Ex (2015)

Context: RE-NPs

Conventional MAGNETIC 4f-ALLOYS

- Binary Alloys
 (R=Tb, Nd,..., X=Al,Cu,
 ...): FM or AFM...RX₂
- Dilution
- Disorder
- Small record in nanoparticles
- Surfaces

- > Permanent Magnets
- CEF influence
- Spin glass

Context: RE-NPs

ANOMALOUS EFFECTS IN 4f- ALLOYS

- Unconventional behaviour in Yb, Ce, Sm or Eu alloys
- Strongly Correlated
 Electron Systems (SCES)
- Unconventional Physics
- Very scarce record in nanoparticles. Surfaces.

- Kondo effect
- > Heavy fermions
- Intermediate
 valence

What can we do at UC About 4f-Nanoparticles?

Outline

I. Context: 3d-4f-Nanoparticles

II. RX₂ Nanoparticles

• III. YbAl₃ NPs: Intro + Structure + Resistivity

Synthesis of 4f-RX₂ NPs

High-Energy Inert-atmosphere Milling (CW, ZrO₂)

de cantabri

- Mass production of Metallic Nanoparticles
- Decent size distribution
- Presence of oxides (Controlled).
- Cost effective. Re-scalable (technology)

UC Nano- RX_2 , R = Tb, X = Cu

DE CANTABRIA

CEMAG, Gijón 2018

150

C. Echevarria-Bonet et al., PRB 87, 180407(R) (2013)

CEMAG, Gijón 2018

(Received 29 July 2010; published 13 December 2010)

Instensity (arb. units)

20

30

40

20 (degrees)

50

60

70

80

10

Neutron Diffraction (LLB G4.1), F. Damay

High CEF anisotropy

Sima et al, JMMM (1986)

Magnetic moment evolution TbCu₂ 5h

5h μ_{Tb}^{3+} = 7.3(5) μ_B reduction $\mu \sim 20\% \rightarrow$ disordered moments Bulk μ_{Tb}^{3+} = 8.8 μ_B

Low T nanoparticle correlation

Brillouin J = 6

Experiment IN6: TbCu₂ Bulk, 2h y 5h

UNIVERSIDAD DE CANTABRIA

SANS (D. Alba, RAL-ISIS)

RAL-ISIS: SANS2D, TbCu₂ 5h

- Progressive variation of magnetic disorder + SAFM
- High anisotropy (SG influence)
- Variation of CEF levels due to disorder
- Disorder is crucial

Work inTbCu_{2NPs,} with oleic acid, (surfactant), seperating NPs.... see J. Nanopart. Res (2017)

Outline

I. Context: 3d-4f-Nanoparticles

• II. RX₂ Nanoparticles

III. YbAl₃ NPs: Intro + Structure + Resistivity

Context: Intermediate Valence

ANOMALOUS EFFECTS IN 4f- ALLOYS

Electronic configurations are well defined when Fermi level and 4f-band are well separated. For an Yb ion:

If $E_F >> E_{4f} \Rightarrow Yb^{3+}$; $4f^{13} \Rightarrow$ localised magnetism. If $E_F << E_{4f} \Rightarrow Yb^{2+}$; $4f^{14} \Rightarrow$ non-magnetic state.

If E_F ~ E_{4f} ⇒ hybridisation of states ⇒ Anomalous effects: Heavy fermions. Intermediate valence. Kondo effect.

Different characteristics but same origin.

UNIVERSIDAD

de cantabri*a*

[S. Doniach, *Physica B* 91, 231 (1977)]

$$T_{RKKY} \propto \mathcal{J}^2 N(E_F)$$

$$T_K \propto e^{-\left(\frac{1}{\mathcal{J}^N(E_F)}\right)}$$

- Several behaviours:
 - If T_{RKKY} >> T_K: the system is ordered magnetically.
 - If $T_{K} >> T_{RKKY}$: non-magnetic.
 - If T_K < T_{RKKY}: μ reduced by the screening of the Kondo effect, but the system can be ordered at a reduced T_C.
 - \circ If T_K ≈ T_{RKKY} : HF.
- QPT: NFL. Magnetic instability.

YbAl₃ bulk cubic susceptibility maximum: intermediate valence valence: 2.86

PHYSICAL REVIEW B 78, 094412 (2008)

Reduction of the Yb valence in YbAl₃ nanoparticles

D. P. Rojas, L. Fernández Barquín, J. I. Espeso, and J. Rodríguez Fernández CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain

J. Chaboy Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain (Received 29 November 2007; revised manuscript received 23 July 2008; published 16 September 2008)

(stinger unmilled (stinger unmilled unmill

Inspiring work/convesations: Bulk, YbAl₃,YbAl₂,T. Görlach et al., PRB (2005); P. Schlottman PRB (2002); YbAl3 nano, De et al., JAC (2017); B. Coqblin (privste...)

20h, D = 20 nm 70 h, D = 12 nm

70 h, D = 11 nm

CEMAG, Gijón 2018

100

Structure (TEM at UC)

The milling of YbAl₃ results in a decrease of particle size as it is also deduced from the TEM analysis.

CITIMAD

UNIVERSIDAD DE CANTABRIA

> The size distribution of nanoparticles relatively narrow.

Evolution from Fermi liquid to Kondo Minimum

For example: Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

4.- In Bulk? Dilution with Lu (in YbLuAl₃) also favours the existence of resistivity minimum

C. Echevarria-Bonet et al., JPCM 30, 135604 (2018)

Just a sketch!

Coherence (Kondo lattice) in bulk

Kondo + Surface disorder in NPs

Conclusions

- The milling of RX₂ produces NPs with an AFM core and a SG shell in a SAFM behavior. Disorder in the Shell changes CEF levels, forced by distortions?

- The milling of YbAl₃ enables the production of large quantities of nanoparticles below 10 nm which show a drastic change in the electrical resistivity with decoherence effects. QIE (Electron-Electron Int) likely to be present (LuAl₃).

Near Future:

- NdCu₂ INS + SANS, modeling (Jesús Blanco, Oviedo)
- RX₂ NPs: Y-La dilutions: magnetic properties
- YbNi₂ NPs, heavy fermion FM, YbAL₃ dots?
- Ho,Tb-NPs (Andreas Michels, U Luxembourg)
- Griffiths Phase + SG in Magnetocaloric TbLaSiGe (bulk) (Noelia Marcano, Zaragoza, Spain)
- Verwey (Charge order) in Fe-oxides NPs in Magnetotactic Bacteria (ML Fdez, Bilbao, Spain)

UNIVERSIDAD DE CANTABRIA

In cooperation with:

María de la Fuente, Elizabeth Martín Jefremovas, Cristina Echevarría Bonet, J. C. Gómez Sal, P. Bender, D. González Alonso, I de Pedro, J. Rodríguez, Jose I. Espeso

Universidad de Cantabria (Santander, Spain)

Daniel P. Rojas Universidad Politécnica de Madrid (Madrid, Spain)

Lidia Rodríguez Fernández SERMET (Santander, Spain)

Sergio G. Magalhaes UFRGS, Porto Alegre (Brazil)

Sebastien Burdin U. Bordeaux (Bordeaux, France)

Jesús A. Blanco Universidad Oviedo (Oviedo, Spain

Ana García Prieto, Lourdes Marcano, Maria L. Fdez-Gubieda

U. País Vasco (Bilbao, Spain)

Ernst Bauer

Tech. Uni. Vienna (Vienna, Austria)

Gilles André, Francoise Damay

LLB (Gif-Orsay, France)

Björn Fak

(ILL, Grenoble, France)

Diego Alba

RAL-ISIS, Didcot (UK)

Funding Acknowledgement: Spanish MINECO + EU-FP7 Large

Thank you! Muchas Gracias