

"Recent advances in magnetism at the nanoscale"

M. Ricardo Ibarra

Instituto Universitario de Investigación en Nanociencia y materiales de Aragón (INMA) Laboratorio de Microscopias Avanzadas (LMA) Departamento de Física de la Materia Condensada

ibarra@unizar.es

Magnetism in nanostructures and applicactions

0

Nanofabrication y advanced microscopies

(ILL año1987)

Outline

- Introduction: Magnetic quasiparticles and spin currents
- Magnetic polarons in manganites
- Thin film multilayers and the emergence of new thermospin effects
- Magnetic nanoparticles as nanoheaters and ultrasound emitters
- Conclusions

Introduction

Exchange interactionMagnetic quasiparticlesSpin currents

Exchange interaction

Magnetism constitutes a unique scenario to study the condensed matter from a macro-meso and microscopic point of view

Macroscopic: Maxwell laws

Microscopic: Electrons Coulomb repulsion and Pauli principle

Going to the smallest: Quasiparticles

Magnetic quasiparticles: emergent nano-objets resulting from collective excitations

Charge and spin currents $J_{\rm c}$: charge current $J_{\rm S}$: spin current Conduction-electron Spin wave (magnons) spin current spin current JS $J_{\rm c}$ J_{S} $J_{\rm S}=0$ $J_{\rm c}=0$ $l_{c} = 0$

Spin current: no Joule heating!

Pure Spin Currents

Magnetic Metal

Net electron spin flow

Magnon flow

Magnetic polarons in manganites

Manganites structure

Cubic perovskite structure

RMnO₃

-Octahedral coordination of the Mn ions

-Mn-O-Mn bound angle 180°

Mixed valence manganites: Distorted perovskite structure

-Change in the bound angle due to different cation size -Different (La⁺³) and (Ca⁺²) valence gives rise to a mixed valent state of the Mn

La_{1-x}Ca _xMnO₃

Crystal electric field interaction

The t_{2g} electrons are localized on the Mn

The e_g level is partially occupy by an itinerant electron

Indirect interactions without overlapping of the magnetic ions charge clouds: -Antiferro and Ferromagnetic superexchange

-Double exchange is ferromagnetic and strong

 \rightarrow Mixed valence compounds: *ferromagnetic* Mn^{+4} -O-Mn⁺³ DOUBLE-EXCHANGE

 e_g electron travelling in a disorder-order t_g core angular moments background

(Dr. Francisco Rivadulla courtesy)

Colosal magnetoresistance

Anomalous thermal expansiion in the paramagnetic phase

M.R. Ibarra et al. Phys. Rev. Lett. 75 (1995) 3541

Small angle neutron scattering: follows the anomalous thermal expansion

SMALL-ANGLE NEUTRON SCATTERING (SANS)

o • IM

Magnetic Polaron

New dynamic phase segregation

De Teresa J.M. , Ibarra M.R.et al. Nature 386 (1997) 256

-Hopping intra cluster $\tau_h < 10^{-9}$ s. -Polaron average life time $\tau_p > 10^{-5}$ s.

Thin film nanostructures as multilayer constitutes the emergence of new thermospin effect

Thermoelectric effects

Spin Seebeck effect effect: Spin current generation by heat

Inverse Spin Hall effect (ISHE)

Interconversion of spin currents – charge currents in non-magnetic metals with high spin orbit coupling (high Z)

(J_S) Spin \longrightarrow (J_c) Charge

E. Saitoh et al. Appl. Phys. Lett. 88, 182509 (2006)

SSE in [F/N]_n multilayers

SPIN CURRENT AT THE INTERFACES

Magnon emission associated with spin accumulation at the metal-ferromagnet interface (Takahasi et al ICM 2009)

Spin angular momentum transfer at the interface: Magnon and elecron spin current interconversion (Steven et al. PRB 86 (2012) 214424)

Optimized configuration

Largest SSE voltage measured in a thin film based structure!!

 $V_{\rm ML} \approx 28 \ \mu V/ \ K !!$

0

Qualitative agreement with experimental results

LMA

Magnetic nanoparticles, due to the electromagnetic radiation adsorption in the radiofrequency range, operate as nanoheaters

• INMA

Nanoscale, 2019,**11**, 3164-3172

- Magnetic hyperthermia is an experimental treatment for cancer.
- Based on the fact that <u>magnetic nanoparticles</u> can transform electromagnetic energy from an external a.c. field to heat.
- If magnetic nanoparticles are put inside a tumor and the whole patient is placed in an a.c. magnetic field, the tumor temperature will rise.
- The elevation of temperature may enhance radio- and chemo-sensitivity, hopefully shrinking tumors.

Losses in magnetic colloids

1. In NPs suspensions (@ RT), the Brownian relaxation in viscous media is

$$\tau_B = \frac{3 \eta V_H}{k_B T}$$

2. Néel relaxation is

$$\tau_N = \tau_0 \exp\left(\frac{K V_M}{k_B T}\right)$$

The total relaxation is

$$\frac{1}{\tau} = \frac{1}{\tau_B} + \frac{1}{\tau_N}$$

Brownian rotation

Physical movement of the MNPs

Neel relaxation

Rotation of the magnetic moment of the MNPs

Fig. 2. Time constants vs. particle size for magnetite particles.

Dendritic cells targeting carrying MNPs: magnetic cells

Dendritic cells + NPs Dendritic cells targeted on tumor

Trojan horse

DCs INTERNALIZATION-TEM

DCs

DCs+ MNPs

50 ugFe₃O₄/ml

° INMA

Focused Ion Beam FIB - Dual Beam

EFFECT OF THE ELECTROMAGNETIC FIELD ON CELL VIABILITY

DENDRITIC CELL VIABILITY

Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Marcos-Campos I, Asín L, Torres TE, Marquina C, Tres A, Ibarra MR, Goya GF. Nanotechnology 22 (2011) 205101

No temperature increase!!!

Colocalization of MNP in DCs

Goya G.F. et al. Current Nanoscience 12 (2016).

Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields

> Receptor Targeted Magnetic Nanoparticle

Cell Surface Receptor

Lysosome

MNP Uptake into Lysosomes A STATE

Burst Lysosome

AMF Results in Release of Lysosome Contents

Domenech et al. ACS nano (2015)

Induced ultrasound generation

Mechanism for membrane disruption?

Mechanical waves, Ultrasound?

(In collaboratio with Prof. Gullermo Rus, UGR)

Magneto-acustic setup

Experimental goals:

- -Thermal stability (Short EMF burst)
- -Lack of interferences and high sensitivity
- -EMF gradients

0

Ultrasound response to the EMF

US signal due to the MNP

0

Prototype for scanner

0 XScan (mm)

°.

Nanomagnetism provides new tools that allows a deep understanding of the phenomena that occurs at the nanoscale even at atomic level

This will allows to design new functional materials.

LABORATORIO DE MICROSCOPIAS AVANZADAS

THANK YOU FOR YOUR ATENTION

o · INMA

° INMA

http://ina.unizar.es ibarra@unizar.es