

Magnetics + Mechanics + Nanoscale = Electromagnetic Future

Greg P. Carman & OTHERS!!!

Funding : AFOSR, DARPA, NSF ERC Award EEC-1160504

- IEEE Magnetics Society Home Page: www.ieeemagnetics.org
 - 3000 full members
 - 300 student members

• The Society

- Conference organization (INTERMAG, MMM, TMRC, etc.)
- Student support for conferences
- Large conference discounts for members
- Graduate Student Summer Schools
- Local chapter activities
- Distinguished lectures

• Journals (Free Electronic Access for Mambers)

- IEEE Transactions on Magnetics
- IEEE Magnetics Letters
- Online applications for IEEE membership: www.ieee.org/join
 - 360,000 members
 - IEEE student membership

IEEE full membership

GOAL

• Convince you to work in Nanoscale Multiferroics

Why

• Future for small scale magnetic devices (1mm > device > 1nm)

Philosophy

• Innovators (W. Isaacson) – Computers – Critical Mass

Presentation

• Motivate NOT impress

Outline

- Motivation Multiferroic
- Nano-Ellipses (Efficiency/memory)
- Nano-Rings (substrate clamping/motor)
- Superparamagentic Control (cool stuff)
- Summary

EM devices are ubiquitous throughout our society

Why Electrical Control of Magnetism

- 1820 Oersted, H Field generated by current
 - Problem Current/Magnetic field magnitude in the small scale

Efficiencies

Internal Combustion Engine

Chemical- Mechanical η = 20 % Efficient

STT – MRAM State of the Art

Electrical – Magnetic 100 fJ to write ~0.3 aJ barrier **η = 0.0003 % Efficient**

Types of Multiferroics

- Single phase Homogeneous material with only one phase most popular is BiFeO(3) –(note antiferromagnetic and ferroelectric)
- Composite Heterogeneous material system
 - Charge mediated systems- VCMA test data- 5 fJ

Exchange coupled— single phase MF + FM (e.g. BFO + CoFe) ~1fJ

 Strain Mediated systems – Piezoelectric layer (i.e. ferroelectric) + magnetoelastic/magnetostrictive (i.e. ferromagnetic).

Solution Strain Mediated Multiferroics

Existing Piezo (0.8) + Magnetoelastic (0.8) = 0.3aJ/(.8*.8) ~1 aJ or η =60% efficient

Problems Nanoscale

- 1. Models ~unavailable
- 2. Experimental demonstration challenging
- 3. Substrate clamping problem
- 4. Why do this? Applications?

What has been done?

Thin Film Multiferroics

Hsu, Hockel, Carman, Appl. Phys. Lett. V 100, Issue 9 (2012)

MFM Imaging100 nm Ni Film

MFM Imaging 60 nm Ni Film

Voltage Control 35nm Ni Film

Control of Micro-Structures

- Ni dots 35 nm thick
- Data shows Neel wall can be manipulated
- Easy axis can be rotated 90 degree, similar to thin film work

Finzio, ...Carman.., Phys. Rev. Applied V1, Issue 2 Mar 2014

PEEM --M. Klaui & Frithjof Nolting et al Johannes Gutenberg & Paul Scherrer

Modeling Background

- 1687 Newton (elastodynamics)
- 1948 Stoner Wohlfarth
- 1955 Landau-Liftshitz-Gilbert (micromagnetics)
- 2000's LLG + uniform strain (uncoupled) > 50 papers
 - 2001 Zhu, 2006 Hu, 2010 Roy, 2011 Atulasimha, 2011 Bur
- 2000's LLG + elastodynamics (coupled) ~10 paper
 - 2004 Shu Analytical 2D solution
 - 2005 Banas Analytical solution
 - 2005 Chen Numerical solutions
 - 2012 Miehe variational principles
 - 2012 Liang nanoscale single domain –UCLA ~4 papers

Elastodynamics

$$\nabla \cdot \underbrace{\sigma}_{e} + \underbrace{f}_{e} = \rho \underbrace{u}_{e}$$

$$\underbrace{\sigma}_{e} = \underbrace{C}_{e}$$

$$\underbrace{f}_{e} - \nabla \cdot \underbrace{C}_{e} \underbrace{e}^{m} - \underbrace{C}_{e} \underbrace{d}_{e}$$

$$\underbrace{d}_{e} \underbrace{H}_{e} = -\mu_{0} \gamma \underbrace{M}_{e} \times \underbrace{H}_{e} \underbrace{H}_{e} + \underbrace{\alpha}_{M} \underbrace{M}_{e} \times \frac{\partial \underbrace{M}_{e}}{\partial t}$$

$$\underbrace{H}_{e} \underbrace{H}_{e} = -\frac{1}{\mu_{0}M_{s}} \underbrace{\partial E}_{ne} = \underbrace{H}_{ee} + \underbrace{H}_{e} + \underbrace{H}_{e} + \underbrace{H}_{e} + \underbrace{H}_{e} \underbrace{M}_{e} \underbrace{$$

Modeling Coupled System of Equations

- > Equations of LLG, piezoelectric effect and elastodynamics are a system of coupled partial differential equations
- Total equal 7 coupled PDE + 4 coupled PDE.

Analytical & Experimental Setup

- (a) Element size ~ exchange length 7 nm
- (b) Coupled model
- (c) M, H, ϵ, σ spatially vary

- (a) Ni magnetoelastic material 300 x 100 nm
- (b) Array of nanostructures
- (c) MOKE measurements

Bur, ... Carman,, JOURNAL OF APPLIED PHYSICS, Vol 109 Iss: 12, JUN 2011

Quantitative Agreement Exp & Models

The LLG/EQ model good agreement less than 2% error Stoner-Wolhfarth model and the LLG model as much as 300% error.

JAP + App Phy Rev

Shear Lag Dependence

- Stress/strain distribution is non-uniform
- > M/H distribution is non-uniform.
- Constant strain present is inappropriate for this structure..

Single Domain PEEM

Buzzi ,... Carman, PHYSICAL REVIEW LETTERS Vol 111 Iss: 2, JUL 9 2013

Substrate Clamping Problem

Simulation Results

<u>Write Energy =0.3 fJ</u> <u>TD= 0.08fJ or 80 aJ</u> <u>Optimized = 10 aJ</u>

Liang... Carman, JOURNAL OF APPLIED PHYSICS, Vol: 116 Issue: 12, SEP 2014

Magnetic states in micron-scale rings (stator)

Red Blood Cell

Magnetic state

- Onion state
- Vortex state

Onion state

Vortex state

Simulation vs. Experiment (cont'd)

Sohn, Nowakowski, ... Carman, ACS NANO, Vol: 9 Issue: 5 MAY 2015

Modeling Time=0 s Arrow Surface: Volume: Dependent variable m1 (1) ▲ 0.58 **1.4 μm** 0.8 Ν 0.6 Ν 2 µm S 0.4 S 0.2 0 **Before Strain** -0.2₹ 0.58 **Principal stress direction**

45° Rotation PEEM Data

First Demonstration of Deterministic Onion State Rotation in Nanoscale Multiferroic Rings!

Analytical vs Experimental AGREEMENT

Sohn, Nowakowski, ... Carman, ACS NANO, Vol: 9 Issue: 5 MAY 2015

Surface Electrodes on Thin Film Ferroelectrics

Red Blood Cell

Model of 360 Rotation

Liang .. Carman, Journal of Applied Physics, Vol. 118, Iss 17, Nov 2015

Surface Electrodes – First results

Domain wall motion from surface electrodes

Magnetic Force Microscopy Images Initial state V at A-A V at B-B

Cui, Lynch.. Carman, APPLIED PHYSICS LETTERS Vol: 107 Iss: 9, AUG 2015

New Motor Concept: Moving Magnetic Micro-beads

Can we deterministic manipulate a magnetic object coupled to the ring DWs?

Magnetic bead and tail synthesis: Collaboration with Sarah Tolbert (UCLA)

Axial rotation

- Rotor
- Rotating tail

This can be a Motor

Magnetic Field Rotation Rapoport/Beach APL 2012

Electric Field Rotation

Sohn, Nowakowski, ... Carman, ACS NANO, Vol: 9 Issue: 5 MAY 2015

Enable Other Technologies

Other Cool New Stuff f(size)

Superparamagnetic Control

Collaboration with Sarah Tolbert UCLA

- Ni Nanocrystals thermal decomposition (Tolbert)
- Deposition on 011 PMN-PT
- Single layer of nanocrystals

Kim, Schelhas... Carman, "NANO LETTERS, Vol: 13 Iss: 3, MAR 2013

Electric Control M vs H (RT)

- E field turns on stable single domain
- Hc increased by ~100 Oe
- Ha increased to ~600 Oe

ZFC Electric Control T_B

Critical Mass

Computers developed because multiple people solved different hard problems – critical mass

Problems being solved were by groups of individuals - collaboration

Now is the time for a breakthrough in control of magnetism in the small scale – *Future is now*

Summary

- Nanoscale multiferroics control magnetization small scale
 - <u>Efficiency</u> Order of magnitude better
- Modeling needed to guide concepts, **must have**
- Testing of concepts challenging, small scale
- Application memory, motors and **much more**
 - <u>Other just cool stuff Future of miniature electromagnetics</u>

Thanks to Students & Research Scientists

- Josh Hockel
- Scott Keller
- Paul Nordeen
- Hyungsuk Kim
- Cheng-Yen Liang
- Chin-Jui Ray Hsu
- Tao Wu

PEEM --M. Klaui & Frithjof Nolting et al Johannes Guenberg & Paul Scherrer
PEEM – R. Candler & J. Bokor UCLA & UCB
Superparamagnetic – S. Tolbert UCLA

TANMS ERC is seeking new Industry Partners

"We have a new way to control magnetism, in the small scale, that we think will CHANGE the world."

TANMS is currently seeking new Industry Partners to collaborate with and to join its industrial advisory board!

(Companies with an interest in Nanoscale Multiferroic applications in Memory, Antennas, Motors, Materials, and Modeling)

