Reunión del Club Magnético Zaragoza, 13th December 2012

Molecular prototypes for spin-based quantum logic gates

Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Departamento de Física de la Materia Condensada Universidad Zaragoza

Outline

Molecular qubits

Molecular quantum gates

Integration of SMM into superconducting microdevices

Molecular qubits

Molecular quantum gates

Quantum computers

Richard Feynman, 1982

- Process information using quantum laws
- Bit \rightarrow Qubit

- Two well defined states
- High quantum coherence
- Integration into a scalable architecture

Qubits

 $\begin{array}{c}
1 \\
0 \\
\Omega_R \propto \left\langle \downarrow \left| \vec{b}_{rf} \cdot \vec{S} \right| \uparrow \right\rangle
\end{array}$

 $|\uparrow\rangle \to \alpha |\uparrow\rangle + \beta |\downarrow\rangle$

- Two well defined states
- High quantum coherence
- Integration into a scalable architecture

Molecular spin qubits

Molecular spin qubits

2.0

0.25

Single-ion magnets

Some outstanding characteristics...

- Simple (just 1 magnetic atom)
- Weak interactions
- Magnetic solubility
- Nuclear-spin free systems
- Control over parameters

M. A. AlDamen et al, J. Am. Chem. Soc. 130, 8874 (2008); M. A. Aldamen et al, Inorg. Chem. 48, 3467 (2009)

Single-ion magnets

Some outstanding characteristics...

- Simple (just 1 magnetic atom)
- Weak interactions
- Magnetic solubility
- Nuclear-spin free systems
- Control over parameters

M. A. AlDamen et al, J. Am. Chem. Soc. 130, 8874 (2008); M. A. Aldamen et al, Inorg. Chem. 48, 3467 (2009)

Tailoring the energy-level structure: the case of Gd

M. J. Martínez, S. Cardona, C. Schlegel, F. Moro, P. J. Alonso, H. Prima-García, J. M. Clemente, M. Evangelisti, A. Gaita, J. Sesé, J. van Slageren, E. Coronado, and F. Luis, Phys. Rev. Lett. **108**, 247213 (2012).

Magnetization curves: spin values

 $\mathrm{GdW}_{\mathrm{10}}$

S = 7/2 g = 2 GdW₃₀

S = 7/2 g = 2

Heat capacity & EPR: zero-field splitting

 GdW_{10} S = 7/2

 GdW_{10} $\mathrm{GdW}_{\mathrm{30}}$ 10[°] 5 B. Bri ¹⁰ د الم 10,5 10⁻² A CO. CO. 1)⁻³ 10 10 1 *T* (K) *T* (K) GdW₃₀ Data Data Fit Fit Absorption (a.u.) S = 7/2*g* = 2 0.7 1.4 0.6 0.9 1.2 0.0 $B_{20}/k_{\rm B}$ = +0.019 K Magnetic Field (T) Magnetic Field (T) $\mathcal{H} = B_{20}O_2^0 + B_{22}O_2^2$ $B_{44}/k_{B} \approx 4 \times 10^{-4} \text{ K}$ $B_{22}/k_{\rm B} \approx +0.019 \, {\rm K}$

Molecular design of the spin Hamiltonian

Magnetically diluted samples: Gd_xY_{1-x}W₃₀

Determination of anisotropy parameters

S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Camón, M. Evangelisti, F. Luis, M. J. Martínez-Pérez, and J. Sesé, JACS **134**, 14982 (2012).

Quantum tunnel splitting

Quantum tunnel splitting

Direct detection of Δ by heat capacity measurements

Quantum tunnel splitting

Direct detection of Δ by heat capacity measurements

icma

Fe₈

Mn₄Cl

Strong quantum regime

 Mn_{12} $\Delta/\hbar \approx 2 \text{ Hz} (10^{-10} \text{ K})$

 $\Delta/\hbar pprox$ 200 Hz (10⁻⁸ K)

 $\Delta/\hbar \approx 21 \text{ kHz} (10^{-6} \text{ K})$

 ${\rm ErW}_{10}$ $\Delta/\hbar \approx 2 \ {\rm MHz} \ (10^{-4} \ {\rm K})$

TbW₃₀ $\Delta/\hbar \approx 28 \text{ GHz}!! (1 \text{ K})$

icma

Strong quantum regime

Mn₁₂ $\Delta/\hbar \approx 2 \text{ Hz} (10^{-10} \text{ K})$ E/k^B(K) Fe₈ -54 $\Delta/\hbar \approx 200 \text{ Hz} (10^{-8} \text{ K})$ -0.15 -0.10 -0.05 0.00 Mn₄Cl $\mu_0 H_{z}(T)$ $\Delta/\hbar \approx 21 \text{ kHz} (10^{-6} \text{ K})$ 14 ErW₁₀ 12 10 $\Delta/\hbar \approx 2 \text{ MHz} (10^{-4} \text{ K})$ χT(a.u.) 8 0.17 Hz 3.38 Hz TbW₃₀ 13.47 kHz $\Delta/\hbar \approx 28 \text{ GHz}!! (1 \text{ K})$

Suppression of μ_{eff} by quantum fluctuations

Molecular qubits

Molecular quantum gates

' () ()

Integration of SMM into superconducting microdevices

Universal CNOT quantum gate

Universal CNOT quantum gate

Molecular design

Dinuclear [Tb]₂ complex

Linked to three asymmetric H₃L ligands

Two anisotropic spins in different coordinations

D. Aguilà *et al,* Inorg. Chem. **49** (2010) 6784 G. Aromí, D. Aguilà, P. Gámez, F. Luis, and O. Roubeau, Chem. Soc. Rev. **41**, 537-546 (2012).

Definition of qubit states

[LaTb] $J = 6, g_J = 3/2$

Definition of qubit states

Definition of qubit states

Coupling between the Tb³⁺ qubits

Coupling between the Tb³⁺ qubits

$$\mathcal{H}_{exch} = -J_{ex}J_{z1}J_{z2}$$

Magnetic asymmetry

Magnetic asymmetry

Heterometallic clusters

All ingredients are met!

99.99% lie in the ground state below 20 K

Antiferromagnetic coupling below 3 K

Non-collinear easy axes or different ions

[Tb]₂ as a CNOT gate

$\mathcal{H}_{m=\pm 6} = -2J_{ex}J_{z1}J_{z2} - g_{J}\mu_{B}(H_{z1}J_{z1} + H_{z2}J_{z2}) + A_{hf}(J_{z1}I_{z1} + J_{z2}I_{z2})$

Implementation by EPR

CNOT transitions are not forbidden

Implementation by EPR

SWAP gate operations are also possible!

F. Luis et al, Phys. Rev. Lett. 107, 117203 (2011).

Quantum coherence? (X-band pulsed

EPR)

Three-qubit gates (in progress)

Three-qubit gates (in progress)

New molecular prototypes

CuEuCu optically controlled \sqrt{SWAP}

Three-qubit gates (in progress)

New molecular prototypes

CuEuCu optically controlled \sqrt{SWAP}

Molecular qubits

Molecular quantum gates

Hybrid quantum computation architectures

Magnetic qubits as hardware for quantum computers. J. Tejada, E. M. Chudnovsky, E. del Barco, J. M. Hernandez and T. P. Spiller, Nanotechnology **12** (2001) 181–186

Cavity QED Based on Collective Magnetic Dipole Coupling:

Spin Ensembles as Hybrid Two-Level Systems. Atac Imamoglu, PRL **102**, 083602 (2009)

> Superconducting µcircuits

The challenge: magnetic coupling

 $g = \frac{2g_J \mu_B J h_{rf}}{h} \approx 100 \, \text{Hz} << \text{T}_2^{-1}$

1. Scaling down the dimensions of the device

Nanoscopic coplanar transmission lines and resonators

1. Scaling down the dimensions of the device

Nanoscopic coplanar transmission lines and resonators

1. Scaling down the dimensions of the device

2. Playing with the sample position !!!

The device: microSQUID ac susceptometer

MJ Martínez-Pérez, J. Sesé, F. Luis, D. Drung and T. Schurig Rev. Sci. Instrum. **81**, 016108 (2010)

The tool: Dip pen nanolithography

The sample: ferritin-based nanomagnets (CoO)

2 nm sized Antiferromagnetic particle

Direct deposition on the most sensitive areas

Detection of the linear response of a SMM monolayer

Hybrid quantum computation architectures

Magnetic qubits as hardware for quantum computers. J. Tejada, E. M. Chudnovsky, E. del Barco, J. M. Hernandez and T. P. Spiller, Nanotechnology **12** (2001) 181–186

Cavity QED Based on Collective Magnetic Dipole Coupling:

Spin Ensembles as Hybrid Two-Level Systems. Atac Imamoglu, PRL **102**, 083602 (2009)

Conclusions

- \bullet LnW $_{10}$ and LnW $_{30}$ are solid candidates to act as spin qubits
- [LnLn'] clusters, designed and synthesized via coordination chemistry, meet the following ingredients
 - weak AF coupling between qubits
 - magnetic asymmetry molecular prototypes for CNOT quantum gates

- SWAP gate operations can be performed in the same molecule
- Dip pen nanolithography enables integrating molecular qubits into superconducting microdevices: towards the implementation of quantum architectures

Instituto de Nanociencia de Aragón

Ana Repollés

Jenkins

Alonso

María José Martínez

David Zueco

Javier Sesé

Cordoba

Ana Isabel Lostao

Olivier Roubeau

Agustín

Camon

Marco Evangelisti

Miguel

Dietmar Drung

Thomas Schurig

Guillem Aromí, David Aguilá (ét al.)

ICMol INSTITUTO DE CIENCIA MOLECULAR

Salvador Cardona-Serra Helena Prima Alejandro Gaita-Ariño Juan Modesto Clemente

Eugenio Coronado

CENTRE D'INVESTIGACIÓ EN NANOCIÈNCIA I NANOTECNOLOGIA CAMPUS UAB. BELLATERRA. BARCELONA

Bellido

Daniel Ruiz

Micro-SQUID ac susceptibility: single-ion magnet behaviour

 GdW_{10}

10²

(Hz)

10⁴

10⁶

Spin-lattice relaxation

Ζ

Thermally activated relaxation agrees with master equation calculations

Spin-lattice relaxation

T < 0.1 K:

Pure quantum tunneling: agrees with prediction of Prokof'ev and Stamp (PS), PRL **80**, 5794 (1998).

