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Helix brain and mapped single neurones:
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PART I.-

MODEL OF 
SUPERDIAMAGNETISM AND 
Ca2+ COULOMB EXPLOSION  

(SD+CE) FOR NEURONE 
MEMBRANE RESPONSES TO 
APPLIED MAGNETIC FIELDS.
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In the bioelectric activity (dynamics) of neural tissue, either spontaneous or 
under applied magnetic field (MF) there appear two main issues: 

i.- the generation and structure of the bioelectric impulse,

ii.- its repetition frequency.
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�Biolectric impulse:
• The process by which the impulse starts it is thought to be the result of small sub-

threshold voltages sum up to a threshold voltage, Vs where the depolarization (D)
process starts, with the entrance of Na2+ ions to the cell, through voltage activated Na+-
channels. 

** We will discuss here the time 
shape of the impulse once it is 
formed, dividing it in: 
depolarization (D) and
hyperpolarization (H, due to 
sorting out of K+ ions through 
delayed rectifier voltage-
operated K+-channels). 

***The MF effect on electrogenic

pumps,which promote the
entrance of 2 K+ ions against the sorting out of 3 Na2+ ions, making the membrane going 
to the resting potential, Em was already considered in Part I, so completing the full 
scenario. The MF effect on such a regime is the decrease of impulse D amplitude, when 
MF is strong enough (2).

(2) Azanza M.J., and del Moral A., J. Magn. Magn. Mat. 157-158:  593-594, 1996.

Fig.19.-
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A.- WHICH ARE THE BIOLOGICAL EFFECTS TO BE 
EXPLAINED?

- Effects of static magnetic fields (SMF) on single neurones, to 
separate out MF from electric fields accompanying time 
rapidly variable magnetic fields.  

- Understanding why SMF (B=1 mT -few kGauss) and 
quasistatic or extremely low frequency (ELF), fM
electromagnetic fields (EMF), these of weaker intensity (from 
about 0.1 mT up to 10 mT and also down to 0.2µT) are the 
relevant interacting ones with neurones (high frequencies (>
100 MHz) seem irrelevant). 

- Very elusive problem since the main discovery of the so 
called “frequency window effect” made by Bawin and Adey
since thirty years ago (1975, to be considered in Part II).
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Our main experimental observations in Helix single neurones:

i) a progressive and strong decrease of the neuron firing frequency with 
increasing intensity of SMF from ≅ 10 G (1 mT) (Figs 1 and 2); 

ii) a sharp full abolishing of neuron activity at SMF fields ≅ 5.7-7.3 kG (Figs.2, 3)

Fig. 1.- SMF B= 13 G. a) spontaneous, natural, 
bioelectric activity. b) and c) progressive firing 
frequency decreasing with H application.

Fig.2.- SMF (0.05-5.7 kG range) induces a 
progressive decrease of neurone firing frequency: a)
spontaneous activity. b) –h) MF intensity is 
progressively increased at steps of 1 min. i)
abolishing of neuron activity
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iii) progressive decrease of the amplitude spikes with increasing SMF B
(Figs.2 and 3).

Fig.-3. SMF induces neuron   
depolarization voltage amplitude 
decrease. SMF intensity in kGauss. 

In the last two recordings, after 30 
min of exposure to 7.2 kG SMF, 
the spikes amplitude was 
completely abolished.
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iv) ♠ Under ELF-MF we found synchronization firing of couples of neurons.
♠♠Synaptic delay is not observed, favouring our SD+CE model via PP electric quadrupolar
interaction. 

Fig.-4.- Progression of frequency synchronization (mapped neurons V20 and V44) after applying MF of 50 
Hz. Note: short duration inhibition at mins 37, 50, 52 and 55 and bursting activity at min 41 and 53. On 
min 55 both neurons show the same frequency 
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v) - decrease of the firing frequency, f with the increase of the ELF-MF, 

frequency ,    fM , at constant B0= 1mT.

Conclusion from experiments:  firing frequency is the relevant magnitude to 
look upon for neuron response to magnetic field, for developing a model.

vi)- Some kind of “resonance” when both frequencies match,i.e. fM ≅ f0.

Fig.5.-
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“Resonat” behaviour :

♠ A): f0= 2.4 spikes/s, 
frequency and amplitude 
progressively decrease, 
being the neuron activity 
completely and sponta-
neously inhibited after 6 
min recording.

♠ B): ELF-MF of 1 mT-2 Hz, 
for 10 min. With 4 min 
delay the neuron activity is 
stimulated, spikes 
amplitude increasing.

♠ C): ELF-MF of 1 mT- 1 Hz
the  frequency and 
amplitude decrease, being 
the neuron completely 
inhibited. 

♠ Experiment duration: 35 
min.Pérez-Bruzón R.N., Tesis Doctoral, Zaragoza, Spain, 2006

Neurone V19.Neurone V19.
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“Resonance” again:

♠ a-b) f0= 3.0 s/s

♠ c-j) ELF-MF 1mT, fM = 2 Hz,

inhibition of neuron 
activity

♠ k-ñ) fM = 3 Hz = f0,
stimulation!

♠ o-t) fM = 4 Hz, neuron 
inhibited

♠ u-x) fM = 3 Hz = f0, 
stimulation

Experiment duration: 60 min

Pérez-Bruzón R.N., Tesis Doctoral, Zaragoza, Spain, 
2006

Neuron F9
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B. THE SD+CE MODEL.
I. MODEL BASES.

• Our fully quantitative physical model explains bioelectric activity of single unit neurons 
under static (SMF) and extremely low frequency (ELF)-magnetic fields (B), based upon 
the following assumptions: 

1. Strong anisotropy of diamagnetic susceptibility   (DS) of membrane phospholipids (PP)
and Na+-K+- ATP-ase pumps.

• Magnetic susceptibility parallel to the longer PP axis,        , is different to the 
perpendicular one,        : susceptibility anisotropy being :                                   .                     

PP rod approximation in the model:

χ

⊥χ
⊥−=∆ χχχ
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• 2. Cooperative action of PP, forming large correlated

clusters within the membrane liquid crystal: called 

superdiamagnetism. Correlation is by quadrupolar

PP interaction (PP has no significant PP electric 

dipolar moment):

cluster formation in the membrane liquid 
crystal of correlated PP long axes        through 
their electric quadrupolar moments, 
(tensor) interaction, of pair (i, j) correlation 
function,                            ,

by which the PPs cooperatively rotate out 
from the MF B axis (SD).       is the canonical 
ensemble thermal average

The correlation length, ξ, can exceeds a single 
neurone, via the PPs of the interposed glia
membranes between neurones, and through 
the gap junctions.

• 3. Coulomb explosion and liberation of  Ca2+

attached to PP, at both membrane sides. They 
open Ca2+ -dependent-K+-channels (CaKch).

• * We underline: very precise values of 
parameters intervening in our model are 
crucial in order to explain experiments!.

iQ
~

( )ξ−−∝−= )ss(expQQQQ
~

C ijjijiQ

r

Qi

Qj

+

+

- -

...

-

( )
30Q

r

ˆQ
~ˆ

81V
⋅⋅

πε=

ˆ

( ) ( ) 'dV''ˆ'ˆ3'rQ
~ 2 ρ−= ∫ r

Quadrupolar electrical 
potential:

Quadrupolar moment tensor:

+

+

- -

r’
Χ

ˆ

si

sj

O



17

N

N
np

N

N
np

N

np

n

n

N
N

np

n

n

N

Connexin 26 expression (gap junction (-->) protein between membranes )



18

N1

N2

GC

N1

N2

GC

N1
N2

N3
N4

GC

N1
N2

N3
N4

GC

Glia cell (GC) connecting neurone membranes through gap-junctions(Æ)

membrane glia expansions



19

II. MODEL DEVELOPMENT.
i) Membrane superdiamagnetism and Ca2+ Coulomb explosion:

* Membrane bilayer PP’s , negatively charged (-e) at polar terminations of 
phosphatidylserine (PS) and glycolipid (GL), in the inner and outer halves of 
spherical membrane, being able to capture external and cytosolic Ca2+ ions.

Fig.6.- Membrane average content of 
inner PS molecules is ≅ 14 % of 
membrane PP’s,while the GL content
in the outer half of the bilayer is ≅ 15 % 
(the same). Bound to heads are water
solvated Ca2+, overall heads having an 
effective positive charge, δ. Interposed 
between the lipids are cholesterol
molecules with dielectric constant ε r = 
2.21. 
Crucial length! in the model are: l ≅ 60 
Å and p ≅ 14 Å (obtained by Dreiding
moloecular construction). 
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Fig.7.- a) Neuron membrane, with nearest neighbours PP (≅ 2% in 
membrane), with Ca2+ ions attached. θ,  polar angle of the radial PP. The 
calculated angle θ0 =120º (calculated) below which there is not possible Ca2+

liberation is shown. 

b) Membrane under an applied magnetic field B, where diamagnetic PPs have 
fully rotated becoming their long axes orthogonal to B: then  membrane shrinks
(rotational dia-magnetostriction) and the Ca2+ charged heads approach.
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** Because of formation of Ca2+ electrical images within membrane, this is 
substituted by bilayer with effective charges
δ+

eff = (2εr/(εr+ε’r))e << + e. 
where  dielectric constants ε r’ ≅ 80 (Ca2+ solvation water) and ε r = 2.21 
(cholesterol molecules). Strong reduction of effective Ca2+ charge down to δ +

eff
= 0.053 qCa (outside Debye screening length).

Fig.8.- Effective charge, δ+
eff , in  the 

Ca2+ ions, and  polyanionic membrane 
surface ligands δ-

eff charge, due to the 
effect of the negative electrical images 
formed inside membrane, which reacts 
on the Ca2+ and ligand charges as well, 
reducing the coulomb attraction. 
Main dimensions: dw ≅ 10 Å , dw’ ≅ 3 
Å.
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*** When SMF B is applied, since          < 0 the PP’s rotate off the B lines, 
for B > B0 becoming orthogonal to B (Fig.7.b). For       > 0, i.e. for proteins
inmersed in the PP liquid crystal, rotation is the opposite one, e.g. ATTP 
trying to become parallel to B (Fig.9). Same should happen to Na and K 
protein channels, but they are firmly attached to bilayer.

Fig.9.- PP bilayer with 3Na+-
2K+ -ATP-ase protein 
pump (ATPP). θ , angle of 
ATPP axis with magnetic 
field B: protein becomes less 
effective in hydrolizing ATP 
due to rotation.

χ∆
χ∆
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**** If Ca2+ charged PP’s at both sides of 
membrane are nearest-neighbours ( 
probability ≅ 2%) , there exists a ½
probability of opposite sense PP 
rotation, then NN Ca2+ ions 
approaching each other, and if 
Coulomb force is strong enough, ionic 
bond of energy, εb is broken (possible 
because dielectric constants 
εr(membrane) << ε’r(solvation water). 

► Ca2+ions are liberated through 
simultaneous Coulomb explosion at 
both sides of membrane.

-PP cluster rotates through a “domino”
process (correlation) and membrane 
thickness shrinks (magnetostriction-
like, see Fig.7. b). This mechanism is a 
0K one, important temperature effects 
being later included. 

►In our opinion  this is the rationale
to explain liberation of static electric 
charges (Ca2+) by static or quasistatic
(ELF) magnetic fields, 

)x(q BvF =

where EM energy absorption is 
forbidden or almost. Recall SMF or 
quasistatic MF Lorentz magnetic force 
(EF E≅0),

can not produce work upon charge for 
such magnetic fields:

0d).x(qL == ∫ lBv
merely since   .ldv

v
dl

B
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Schematic mechanisms involved in the SD+CE model:
� Two nearest-neighbour Ca2+-charged phospholipids (rods) rotate under their assumed 

opposite magnetic torques, τm = ± m x B approaching the Ca2+ ions (black circles), 
attached to the PP negatively charged heads (lozenges). m is the PP magnetic  moment, 
induced by AC MF.

� � The weak ionic bindings are broken by their mutual coulomb repulsion.
� � � The ions become simultaneously detached from the membrane surfaces when their weak 

ionic bonds, of energy εcoul, to the heads are broken due to Ca2+- Ca2+- coulomb repulsion. 

� � � �Within the cytosol the Ca2+ ions diffuse towards the K+-protein channels, which are 
opened when Ca2+ is captured by the “gate” molecule (calmodulin, with four anchoring 
points), giving rise to the  outwards K+ current  (neurone hyperpolarization).

Polar 
head



25

Ionic protein channels in Helix, observed by immunocytochemistry

K+ channels operated by Ca2+ 

Delayed rectifier K+ channelsVoltage operated Na+ channels

Voltage operated Ca2+N channels
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ii) Energetics of Ca2+ liberation:

* In limit position (f) when the NN Ca2+ charged PP have rigidly
fully rotated, becoming closer than as rest positions (i), variation 
of Coulomb repulsion energy is,  
(ε f - εi )/ εi = (p/l) sen θ,                                    [ 1]

corresponding  to initial di and final df distances between the NN 
opposite Ca2+ ions (Ca2+membrane attached will be stable if εi < 
εb, the binding ion energy).

Fig.10.-A) Intermediate position 
of charged NN lipid magnetic  
dipoles for SMF B<B0 ,where 
dipoles (+δ+) have rotated angle 
γ under magnetic torque Γ .  

B) NN initial positions at zero 
field, BB’ and AA’ for two 
“active” PP’s. After application 
of  B0 dipoles have fully rotate 
an angle θ’ .Initial Ca2+ distance 
di, longer than final df , and so 
Coulomb repulsion increases.
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** Coulomb explosion and ion liberation happens if  

ε f ≥ εb , giving the Ca2+ detaching condition 

sin θ ≥ rb (l/p) > 0,     with  rb=(εb/ εi) – 1 [ 2]

***From [ 2 ] we deduce a threshold angle θ0 ≅ 30º above which Ca2+

liberation can occur (Fig.7.b):  Coulomb explosion occurs within a cap of ≅
120º around B, i.e. over a 67% of the whole membrane !.
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**** Liberation of ≈ 0.7 Ca2+ ions/ 100 PP to the cytosol, with concentration 
increase of ≈ 2 x 103 Ca2+/µm3. This is remarkable: this concentration is ≈ 10 
times greater than the normal one (less than 100 Ca2+/µm3) and roughly of the 
same order as the variation produced by the action potential, with the 
spontaneous entrance of Ca2+ through calcium channels, at neurone 
depolarization regime.

♦ Energies involved in Ca2+ liberation:

♣ Initial Coulomb repulsion energy is εi = (1/4πεrε0)(δ2
eff/di) ≅ 5.2 meV, giving 

an upper limit of binding energy εb = 6.4 meV, small due strong reduction of 
non neutralized Ca2+charge (+e) by NANA and PS – e charges and membrane 
electrical images (down to only δeff = +0.053 e).

►It can be argued that εb is smaller than thermal fluctuation energy kBT/2 ≅ 13 

meV at 300 K for PP rotation. But we should also introduce water tension

pressing upon the solvated Ca2+ ions,                         ≈ 4 meV. Then εγ + εb ≅
10.5 meV roughly contrarrests thermal energy fluctuation. Therefore thermal 

dependence of bioelectric firing is expected to be important.

2
2Ca

R +πγ=
γ

ε
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►Inner check: radius of - charged groups is given by 

[ 3]

where ε’r ≅ 80 for the solvation water and               ≅ 3 Å. 
Bringing εb to [ 3] one obtains R- = 3.5 Å, the well known 
syalic-acid (NANA) radius!.

►We should underline the tight consistency of such a 
“complex” calculation!.
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♣♣ Diamagnetic energy:

Magnetic energy of a diamagnetic molecule in an applied field of intensity H is 

EM = - (1/2) Vµ0H.     . H , [ 4]

Where      is the susceptibility tensor, which for molecule with cylindrical symmetry

(also ellipsoidal) has diagonal components, and        along PP-axis .V is the PP volume.  

Magnetic energy becomes 

[ 5]

where θ is the angle formed by H with OZ ( cylindrical symmetry anisotropy energy ). 

χ~

χ
⊥χ

( ) ( )θχχµ
2

cos
2

02/1 ∆+⊥−= VHME

Anisotropic (      ≠ ) PP rod,  with 
induced magnetic moment m  in 
applied MF H,  m =      H.

χ ⊥χ

From [ 5 ]:when ∆χ < 0, minimum energy is reached for 
the molecule axis perpendicular to B (phospholipid), 
and parallel for ∆χ > 0 (protein channels or protein 
electrogenic pumps).

χ~

χ~
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♣♣♣Torque excerpted by B upon the induced magnetic moment md is                   

and from [5] one obtains md. If we calculate the thermal

average <md> by Boltzmann statistics (and assume small λ parameter values, 

to see below) we obtain a cluster magnetic moment

[6]

where                         = ∆χ/2 is the PP rotational susceptibility. 

Predicted linearity of Mc with H agrees rather well (Fig. 11) with measured 
magnetization of red blood cell membranes, yielding  χmeas. = - (14 ± 0.5) x 10-7

SI (line slope).

θ∂−∂=Γ /
M

E

HM rc χ=





=χ VHN
m

c

c
r

Fig.11.- Dependence of measured 
magnetic moment ms with B for 
dried powder of red blood cell 
membranes (SQUID magneto-
metry) . From the slope of ms vs. 
B the magnetic susceptibility,       
χ meas is obtained. 
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♣♣♣♣ Cluster size under SMF:

Whole PP susceptibility is: 

χmeas = χr + =     ∆χ/2 +          = . 

Since                      >> ,   then:

χmeas ≅ ∆χ/2. [7.a]

►More accurately, cluster magnetic moment is:   

mc = (NcV∆χ/2) Ier (λ) H, 

where  Ier (λ) is  well known  error  function and variable       

λ = B (NcV/2 kBT)1/2 [7.b]

and if we take the value λ = 0.1,  B = 0.3 T,  T = 300K, representative of our   physiological

experiments under SMF we obtain: 
correlated PP clusters of size     Nc ≈ 5 x 106 PP,                    [8]

i.e.  ≈ 5 x 103 clusters per neurone, a large number. However for weak fields Nc becomes 

much larger than  one single neurone.

However only Npq PP’s are Ca2+ ion charged (probability p) and are NN (probability q), 

conditions to liberate Ca2+ to cytosol (Fig.7).

⊥χ ⊥+ χχ⊥χ

⊥χ⊥χ+χ
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♣♣♣♣♣ Abolishing magnetic field, B0 :
During PP rotation (Fig. 10.A) counterbalance of magnetic and electrostatic 
repulsion energies reads, 
VNc EM = (εi – εc (γ) ) Np, 

where εc (γ) is the Coulomb repulsion energy for a rotation angle γ (Fig.10.A) and εi 

the initial energy . 

►Making the magnetic torque    Γ = ∂ εM/ ∂ γ + ∂ εcoul/ ∂ γ = ∂ εt/ ∂ γ = 0, we obtain 
the PP equilibrium condition, 

sin2(θB -γ)/cos γ = B0/B ,         [9]                                                 where : 

B0 = (µ0δ2
eff pNp/2Vπεrε0           Nc l2 )1/2 . [10]

is the abolishing field (specific for each neuron), such that if B >> B0 , PP’s will 
become perpendicular to B (Fig.10. B) and full Ca2+ ions liberation will be 
produced. 

♥This is the field experimentally found where the firing frequency is abolished, 
transition being rather steep (first order). From B0 we extract the ratio Np/Nc.

♣♣♣♣♣♣ We obtain values of Np/Nc from B0, and then deduce: number of “active”
Np PP  is ≈ 1/30 of the total number of PP within the membrane ( ≈ 1.6 x 1011 is PP 
number for a standard neuron of  ≈100 µm diameter). 

χ∆
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iii) Magnetic field dependence of neurone firing 
frequency.

Model main goal: calculate field 
dependence of the neuron firing 
frequency. In Fig. 13 we schematize 
the dynamic Peierls energy barrier, 

Figure 13.- Ca2+-PP cluster energy against the 
angle, θ, formed by the PP cluster molecules with 
the applied field B. ε (θ0) and ε (θ) are the cluster
energies   at the “initial” state (θ = θ0) and “final”
cluster rotation angle θ. An energy barrier ∆Ec has 
to be overcome, which changes its value with θ0.  
θB is the generic angle of the PP dipole with B. PP 
nanoscopic quantum tunnelling could be also 
possible, although being at low T it is not observed.

∆E c θ( )= − Ncεm + Nnnεcoul( )

●

●

to be overcome by the complex Ca2+-
PP  in going from the “initial” θ B = 
θ0 position to a  “final” θ’B one under 
applied SMF or ELF B (γ = θ’B - θ 0).

PPcl+Ca2+

'
Bθ
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♠ Now in more detail total Ca2+ -PP complex relevant energy is 

[11]

►Ca2+ ion will be released when ε (θB) = εb (binding energy) , so that the 
dynamical energy barrier to be overcome by a PP cluster is

[12]

where recall: Nc is the number of  PP’s in the cluster and Np the  “active”
ones (∆Ec varies along the membrane, since θ0 does so).

( ) ( ) ( )B
2

cos

0
2

V
2

B

.coulbB θχ∆+⊥χ
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♠♠ At temperature T the Ca2+ ions number released per cluster at θ0 position,      
according to Boltzmann statistics is

[13]

and integration of equation [13] over θ 0 (active membrane), to consider all 
membrane clusters, yields a total number of Ca2+ ions liberation:

[14]

where I(λ) = (4π/λ) Ier (λ), the latter being the error-function.
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♠♠♠ Experimentally firing frequency f decreases with increasing 
of B.  This is interpreted as a result of : 

the membrane hyperpolarization produced by the efflux of K+

ions through Ca2+-activated-K+-channels       the decrease of 
positive voltage membrane (from resting potential), so 
decreasing the probability of firing and therefore the ansat
for bioelectric frequency is :

f = C /  NCa2+ ,                    main model equation. [15]

ÎThis is theoretically justified by chemistry mass action law, 

[Pch]= κ [Ca 2+- Pch] / [Ca 2+]  ,                          16]

where [Pch] , [Ca 2+] and  [Ca2+ - Pch] , respectively are 
concentrations of : Pch , open protein channel (final 
binder), cytosol Ca2+,  and   Ca2 -Pch , of the complex. 
κ`(B,T), the chemical kinetics constant. Therefore, 

[ ] [ ]+== 2
ch CaCPCf ,with [ ]PchCa)T,B(C 2 −κ= +
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♠♠♠♠ Series expansion of Ier (λ) gives for 
small λ or small B, the main expression 
in the model

f (B) = f(0) exp ( - α B2) [17a]

with: [17.b]    

where  f (0) is the spontaneous frequency.
Note that for 0.7 T,λ = 0.045 << 4, the 
latter value needed for π/2, or PP 

full rotation.

♠♠♠♠♠ Comparison of the theoretical 

prediction [17] with experimental results

shows that prediction is very well followed

: large region of lineal variation with B2

is fulfilled. Larger slope ( ≅ 80) at weak 

fields B indicates much larger Nc clusters: 

Nc ≅ 4x108.









µ

⊥χ
−≡α

TBk02

VcN

�Slopes , α, are close for neurones II-V: 
good regularity: similar Nc values.

�� Two SMF regimes: slopes red and 
green: change at ≅ 0.1 T. This is 
interpreted as the “fracture” of the low-B 
cluster under stronger B, due opposite 
magnetic torques in PP missalignment
defect:  
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The experimentally measurable slope, 

, [18]

provides strong support to our model as follows:

♦ If we take Nc ≅ 5 x 106 PP/clusters as obtained from λ parameter and 

independent magnetization measurement on erythrocyte membranes, we 

obtain the values for shown in Table, (reasonably close for all tested 

neurons). 

Again:

* ratio Np/Nc ,obtained from  abolishing field B0.

** , obtained from field dependence of firing frequency f (B). 
(from the electro-physiological experiments !)

TBkVcN 02/ µχα ⊥=

⊥χ

⊥χ
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♦♦From our independently measured susceptibility we obtain (in SI 

units) ∆χ = χ|| - ≅ = - (28 ± 1) x 10 -7 , and the 

average physiologically measured          = - 0.56 x 10-7, 

then:           = 28.56 x 10-7 >>           as we expect for a rod-like 
molecule, of  l >>d ( not measurable by SQUID magnetometry, 
unless growing of PP single crystal!)

This remarkable accord gives strong support to the model!.

χ
⊥χ

measχ2⊥χ

l

d

⊥χ
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Spontaneous frequency temperature,T dependence:

� Such a T dependence is in disagreement with eq.[17] 

(see Fig.14).

The reason is that this neurone belong to the  26% of 

studied ones where f increases with increasing Beff

(1). The responsible mechanism is that the by MF

detached Ca2+ ions depolarize the membrane, through

their electric potential, ∆Vca,
(*) cytosol becoming more 

positive, so opening Na+ and/or Ca2+ channels operated

by voltage, and so 
. 

�� In vitro observation of two phase transitions

in membrane liquid crystal at Tp1≈33 ºC

and  Tp2≈ 37 ºC : rapid f increase, indicative of PP

perhaps critical fluctuations.
(

*) For a spherical neurone of membrane thickness δ,

across membrane (of radius R).

(1) Azanza M.J., and del Moral A. Prog. Neurobiol. 44: 517-601, 1994.
(2)

f ∝ Ca2+[ ]= f0 exp +αBeff
2( )

 

Fig.14.-

( )[ ]+∈∈δ≅∆ +
2

0r
eff
CaCa Ca3qRV 2
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v) Depolarization voltage (d.v.) decrease under 
magnetic fields.

• Decrease (Fig.3) is due to ATPP protein pumps reorientation in B, to 
become with longer axes parallel to B, off natural radial direction (Fig.9). 

•• ATPP solved in PP liquid crystal and due to rotation, protein becomes more 
“immersed “ in the PP liquid crystal: active surface decreases and pump 
losses efficiency.

•••Therefore Na+ cytosolic concentration increases, in turn decreasing 
transmembrane Na+ concentration gradient (Nernst) and hence 
depolarization voltage (d.v.) decreases.
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•••• Pumping takes off +e net charge leaving inner membrane face negatively charged. 
The decrease under MF in charge transferred by a protein channel cluster is 

(B) ≈ Nae exp (- Na EM/ kBT)

, Na EM, is ATP-ase magnetic cluster energy, Na the ATPP’s/cluster.

•••••Summing up over all Npc ATPP clusters in membrane and use of Gauss theorem to 
evaluate the electric field within membrane due to the trapped charge         (B), the 
decrease in voltage across membrane  is given by

∆Vd(B) ≅ - (4π/Npc) εfb exp (+ αB2), [19]

ε f b ≅ 7 mV is the electrogenic pump e.m.f., Vp is the ATPP volume and  ATPP           ≅
+ 0.43 x 10-6 .

► is calculated  from + 

using Gauss theorem: 

for obtaining E across membrane.

dV∆

c
dq∆

∫ =sE d.
r

c
dq

ε
∆

χ∆

c
dq∆

c
dq∆
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♦ Plots of observed decrease in depolarization voltage against B0
2 for four neurons, 

follow well the prediction:

Fig.15.- Semilog plot of log. depolarization voltage decrease versus B0
2 for four neurons.

- From α slope we obtain Na = (0.15-5.9) x 104 (≈1/102 - 1/10 3 Nc , reasonable). 

Note : number Na x Npc per neuron (Npc between 5- 47) of active ATPP’s per 
membrane is well correlated with measured neuron radius (    100 µm). However 
hindrance of ATPP rotation by plasma cytoskeleton could be involved, reducing 
easyness of rotation process.

≈
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vi) Extremely low frequency (ELF) magnetic fields.
♦ For applied ELF-MF neurons respond 

more strongly when the applied 
frequencies, fM in the range of the 
spontaneous neuron firing frequencies, 
f(0), to be considered in Part II in more 
detail.

Applied ELF field is B = B0 cos ωMt, and 
substitution in [17] gives    

f(B) = f (0) exp{-αB2
0 cos2ωMt}. 

►For small applied fields, αB0
2 < 0.02, it 

allows to expand the exponential up to 
B2, and if  fM is ≥ 1Hz, the order of      
f (0) , we can take the B2 time average 
(effective field ) and 
obtain 

f(B0) ≅ f(0) {1-αB2
0/2} ,         [20]

Excellent agreement with observed 
decrease of  f (B0) for a couple of 
neurons V20-44 for  fM = 50 Hz :

Fig.16.- Linear dependence of firing frequency 
with B2

0 for couple of neurones V20 and V44 
under 50-Hz  applied AC magnetic field

From the slopes (α) of Fig.16 we find:
Nc ≈ 1012 PP/ cluster : neurons become 
correlated under ELF-MF, Nc ≈ 10 4 times 
bigger than under weak static MF !. 
Huge size PP clusters are in some way acting 
cooperatively!. 

2/BB 0eff =

V20

V44
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♦♦ Neuron firing Synchronization:

• Most remarkable is that under ELF-MF neurons become synchronized, 
firing at same frequency f (Fig.17): 

Fig.17.-Synchronization of 
firing frequency of pair of 
neurons V20-V44 under 
applied 50 Hz-AC MF. The 
induced synchronizing activity 
remains for about 32 min. The 
frequency for both neurons 
decreases as SMF increases, 
the full f variation is of about 
two orders of magnitude.
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VCluster sizes under weak ELF AC MFS: 
small neurones networks:

�Only adjustable parameter is the 
cluster PP number, Nc in neurone. This 
can be obtained by determining the 
parameter α from the slopes,

of the f(B0) plots under fM= 50 Hz AC MF 
field (1,10). 

Taking , determined in 
erythrocyte membranes by combined 
SQUID magnetometry (    ) and  ( χ⊥)    
electrophysiological experiments  (5,19), 

, T ≅ 293K and α
values, we respectively obtain:  NC ≈ 4 
and 1 x1012 PP  in a cluster, which 
correspond to:

42 and 16 neurones in the clusters, 
forming small sychronized networks
under AC MF.

χ⊥ ≅ −0.56 ×10−7

∆χ

V ≈ 5 ×10−28 m 3

 

Fig.18.- Helix aspersa neurone 

pair V23-V13 (14), showing 

frequency synchronization

under AC MF of fM =50 Hz . 

From line slopes is determined 

the α parameter (for 56% studied 

neurones)  (1) (10).

(1) Azanza M.J., and del Moral A., J. Magn. Magn. Mat. 157:  593 1996.     (10) Ibidem.177:1451,1998.
(5) del Moral A., and Azanza M.J. J. Magn. Magn. Mat.114: 240-242, 1992.
(19) Azanza M.J., Blott B.H., del Moral A. and Peg M.T., Bioelectrochem. Bioenergetics. 30: 45,1993.

( ) 20fs α=
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VV Synchronization volume:

-PP numbers in clusters of synchronized 
neurones V20 and V44 are Nc= 2.1 and 1.1 
x 1012 respectively, meaning synchronized 
clusters of about 13 and 7 neurones 
respectively, around probe ones.

- These numbers closely agree with NN 
neurone membranes around such a probes, 
for which quadrupolar interaction should be 
strongest: atonishing result!.

-Synchronization also found in V-ganglion 
pairs: 6-16, 7-59, 9-55, 13-23, 14-35, 15-49,  
24-45, 25-27,  31-42, 41-54, 44-20, 46-47, 
47-49, 48-64, 51-52, 53-61, 57-58.

-However, pairs are not NN, which 
means a ganglion generalized
sychronization under AC MF!.  
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PART II.-
MODELS OF NEURONE 

DYNAMICS: 
SPONTANEOUS AND 

UNDER ELF 
ALTERNATING

MAGNETIC FIELDS
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1.Bioelectric impulse shape and frequency 
spectrum: model based on modified 
Hodgkin&Huxley (HH) eqs. under AC ELF 
magnetic field: HH magnetic eqs.    
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z All those impulse phases can be explained by the direct integration of the Huxley & 

Hodgkin (HH) equations (3), supplemented by the MF produced Ca2+ current (HHM 

eqs.), that we have done by assuming the membrane as a Kirchoff electric knot, instead 

of as a parallel conductances network as done so far (4). Such an integration has not been 

apparently fully performed so far, the solution being partially conjectured (1).

zz Regarding to the second issue, the neuron impulse frequency, f strongly changes with 

the AC MF frequency, fM.

zzzWith SD+CE and HHM models we have conformed a full picture of the single unit

neurone bioelectric behaviour, either for spontaneous regime or under AC MF, this of 

extremely low frequencies (ELF).

(1) See e.g. R. Dodla & J. Rinzel, Phys.Rev.E 73 ,R10903 (2006); J. Lee et al., J.Theor.Biol. 242,123 
(2006); K.A. Lindsay, J.R. Rosenberg and G.Tucker, J.Theor.Biol., 230: 39-48, (2004).

(3) Hodgkin A. I. and Huxley A.F. J.Physiol. 117: 500-544, 1952.
(4) Kandel E.R., Schwartz J.H. and Jessell T.M. Principles of Neural Science. McGraw Hill, New York, 2000.
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�Biolectric impulse:
• The process by which the impulse starts it is thought to be the result of small sub-

threshold voltages sum up to a threshold voltage, Vs where the depolarization (D)
process starts, with the entrance of Na2+ ions to the cell, through voltage activated Na+-
channels. 

** We will discuss here the time 
shape of the impulse once it is 
formed, dividing it in: 
depolarization (D) and
hyperpolarization (H, due to 
sorting out of K+ ions through 
delayed rectifier voltage-
operated K+-channels). 

***The MF effect on electrogenic

pumps,which promote the
entrance of 2 K+ ions against the sorting out of 3 Na2+ ions, making the membrane going 
to the resting potential, Em was already considered in Part I, so completing the full 
scenario. The MF effect on such a regime is the decrease of impulse D amplitude, when 
MF is strong enough, as already explained  (2).

(2) Azanza M.J., and del Moral A., J. Magn. Magn. Mat. 157-158:  593-594, 1996.

Fig.19.-

D R

H

Vs

Em

D, voltage-
Na-channels

R+H, delayed-
rectifier-K-channels

Em recovery

3Na+-2K+-ATP-ase
Em

Vs threshold
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� � Consideration of this network  by meshes 
does not allow its rigurous solution, and  
we  have  considered  the  membrane  as  a  
Kirchoff electric knot where  the currents 
concur. 
Therefore HH equation takes the knot law 
of charge conservation (no charge 
accumulation in membrane),

where V is the transmembrane voltage, gi
(i = Na, K, L) the channels conductances. 
m and n are the HH channel excitatory

Cm dV dt( )+ gNam t( )3
h t( )V − ENa( )+ gK n t( )4

V − EK( )+ gL V −VL( )− ICa Beff , t( )= 0 [ ]1

and h the inhibitory functions, of microscopic origin not yet fully understood, 
although the phenomenologically needed powers four, point out to four independent 
processes, acting for the opening (m, n) and closing (h) of corresponding channels.    

►Leakage (L) channels and ligand operated channels are likely responsible for the 
setting of the threshold voltage, Vs but current through them is weak and here neglected.    

��� Finally, HH currents have been supplemented by the Ca2+ current produced by 
AC MF (called HH magnetic (HHM) equation). 

Fig.20.- Membrane equivalent 
Kirchoff electric knot.

Membrane

RNa  INa  RL IL 

ICa 

   IC 
 Cm 

 RK 

IK 
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����Moreover under AC MF, the H process (where the cytosol becomes more 

negative due the K+ ions sorting out) is modified by the Ca2+ ions (in number of 

four, Fig.6) binding to the Ca2+ operated K+ protein-channel (more 

specifically to the calmodulin “gate” molecule) and opening it due to the 

calmodulin electrical unfolding (9). This explains the “power four” of  HH 

function n(t).

(9) Babu Y.S., Sack J.S., Greenough T.J., Bugg C.E., Means A.R. and Cook W.J. Nature. 315: 37-40, 1985. 

Fig.21.-
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���We have solved HHM eq.[1] in the relaxation time, τ, approximation for the 
HH functions, where e.g. for excitatory n(t)

[2]

where n(t) is assumed to be proportional to the number of K+-channels which 

remain closed at time t. 

►Integration of eq.[2] taking t = 0 at the beginning of repolarization (R) plus 

H process, yields                                       .                               

Similarly taking t = 0 at the beginning of D process we obtain that excitatory 

. 

► In the other hand the inhibition function at D process follows the equation

, of integral             , time increasing. 

We will now obtain the membrane voltage V(t) dependence, partitioning the 
impulse in the mentioned regimes.

dn dt = −n t( ) τK

n t( )= n 0 exp −t τK( )

m t( )= m0 exp −t τNa( )

dh dt = +h t( ) τ inh h t( )= h 0 exp +t τ inh( )
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Repolarization and hyperpolarization: 

� These two processes follow one after other and it is well known that in the R+H

process only K+-channels are open and therefore knot eq.[1] becomes,

which integration after substitution of n(t) yields

,[3]

which is a complex integral equation with “kernel “ (t origin in eq.[3] is 

taken at                      , origin of R).

Frequevy spectrum of R+H process:

�� For comparison with experimental results in single neurones, it is useful to work in 

frequency domain, ω, so that we will obtain the frequency spectrum of spontaneous 

impulse VK(t). Fourier transform of eq.[3] exp[…] function is unknown, but for  t < τK 

first exponential can be series expanded, so obtaining:

[4]
.

Cm dV dt( )+ g K n t( )4
V − E K( )− ICa B eff , t( )= 0

( ) ( ) ( )( ) ( ) ( )( )



 −+−τ−−+= ∫τ− t

0 K
'

K
'

effCa
't4

mK
4
0KKNaKK EtVt,BIdte1C4ngexpEEEtV K

ICa Beff , t( )
V t( )= ENa

( ) ( ) ( )( ) ( ) ( )( )



 −+−τ−−+≈ ∫τ− t

0 K
'

K
'

effCa
't4

mK
4
0KKNaKK EtVt,BIdte1C4ng1EEEtV K
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��� The ω spectrum of eq.[4] spontaneous VK(t) (Ica = 0) is obtained by 

Fourier transforming VK(t) around a central frequency , characteristic of the 

impulse (1st harmonic), yielding

[5]

where and

[6]

is the HMHW, which provides τK.

ω0
*

VK ω( )= A* ω − ω0
*( )2

+ ∆ω 2( )2[ ]
A* ≡ gK n 0

4 τK 4Cm

∆ω 2 = 2π τK
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���� Therefore the impulse spectrum is the well known lorentzian function, 

typical of resonance processes, taking its maximum value at     .   

Eqs. for           and              can be easily extended to the real situation of having 

different types of K+-channels (up to seven in Helix aspersa (13)), but this 

extension is not  suitable for comparison with the impulse because of the too 

large number of parameters involved.  

(13) Pérez-Castejón C., Junquera C., Pueyo A., Pérez-Bruzón R.N., Azanza M.J., Raso M., Pes N., Maestu C., 
Aisa J., Lahoz M., Martínez-Ciriano C., Vera-Gil A., and del Moral A. Histol. Histopathol. Suppl.1: S134, 
2005.

ω = ω0
*

VK t( ) VK ω( )

Fig.- 22
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Depolarization:

� This process follows after threshold voltage establishment, and since involved Na+

channels are operated by voltage, inclusion of  Ca2+ current only adds a term to VNa(t). 

But also retarded in time K+ channels are opened, although being in small number 

during D tram their current can be neglected.

�� The HHM relevant equation is then               

which in presence of MF yields another integral equation. Integration followed by the first 

exponential expansion as before yields the integral equation,

,   [7]

where the relaxation time is given by                , since the inhibition and 

activation are independent processes.

��� As before the ω-spectrum of spontaneous VNa(ω) is lorentzian of HMHW 

, and . Extension to different kinds of Na+-

channels is not worthwhile because of above mentioned reason.

( ) ( ) ( )( ) ( ) 0t,BIEVthtmgdtdVC effCaNa
3

Nam =−−+

( ) ( ) ( ) ( ) ( )( )



 −+τ−τ−≈ ∫

t

0 Na
'

Na
'

effCa
'

effmeff0
3
0NaNaNa EtVt,BIdttexpC3hmg1EtV

τ eff
−1 = τNa

−1 − τ inh
−1 3

∆ω 2 = 2π τ eff A* ≡ gNam 0
3h 0 τ eff 3Cm
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Comparison with experiments in single neurones.

�We compare our HHM model with electrophysiological experiments 
performed on Helix single unit neurones.
�� Thus in Fig.23 we present the spontaneous (              ) R+H potential 
time variation for two mapped neurones (14), fitted by the approximate 
solution for             , the agreement being reasonable, but where we do not 
reproduced the sigmoidal variation at the ends, due to the series cut-off in eq. 
for           .

��� The more “accurate” frequently used “sigmoidal” fit by                         is 
also shown, but its basis upon n(t) is phenomenological, i.e. taking

,                                  and V(t)      

Beff = 0

1 − e − t τ K( )4
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Fig.23.- Experimental (o) and model (thick line) R+H time variations; sigmoid (thin line).

n(t) = n∞ 1− e− t τK( )

VK t( )
VK t( )

Cm = 0 , n(t)4∝



62

���� We now take , EK = -75 mV, ENa=+50 mV (this e.m.f. rectified by 

the delayed K+ channels),  and Cm=                        

, and from the fits we obtained the  n0 and τK values quoted in Table 1 

����� Clearly we can not identify initial values n0 with the number 

of K-protein channels (KP), with a density of ≈ 7 KP/µm2, which for a 

neurone of 100 µm diameter yields ≈ 2x104 K-protein channels!.

gK =1.6 ×10−7 m−2 Ω−2 4 ×10−2 Fm−2

Table 1.- Initial values of HH function n(t)  and K+ 

relaxation time for several single neurones of Helix.

156.7155V19

12.4272V14

45.0202V3

49.4188F2

33.0200F1

n0Neurone τ K (ms)
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Frequency spectrun of R+H impulse tram:

� In Fig.24 we show the frequency spectrum of a bioelectric impulse of neurone 

V19, together with the fitted theoretical one by eq. for            .

�� Using the parameter values of Table 1 the agreement is excellent, the same 
happening for other studied neurones.  

��� Under applied weak AC MF we have observed that shape of the impulse becomes 

practically  unmodified, which means that the solution of full integral eq. with            
term is only required for strong MFs.  Simplified integral eqs. for            ,i= K, Na can 
be transformed into second order linear differential equations, 

Fig.24.- Frequency spectrum of 

R+H tram impulse. Experiment (�) 

and  model fit (full line).
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d2Vi

dt2
+ Ci

ni

τ i( )
 

 
 

 

 
 

2

e−t τ i( ) + ICa t( )dVi

dt
− Vi + Ei( )dICa

dt
= 0 , i = K,Na

where:   CK = gKn0
4 τK 4Cm , CNa = gNam0

3h0τeff 3Cm , nNa =1,

∆EK = ENa − EK, ∆ENa = ENa, τ K( )= τK 4, τ Na( )= τeff .

���� This is an ordinary 2nd order differential equation of known solution of
the kinds

nK = 4,

( ) ( ) Na,Ki,eBeAV tt
i

tt
ii

i =+= αγ±

����� Therefore time dependence of H+R and D voltages are theoretically rather

complicated in the presence of an AC MF. However experiment says that the

impulse shape does not significantly change in the presence of a weak AC MF 

(usually 0.1-1 mT in our experiments, and down to 0.1 µT).  May be impulse shape 

should change under much stronger AC MF, a matter to be investigated further.

γ± t( )= 1 2( ) −ICa ± ICa
2 + 4 dICa dt( )[ ]where are the roots of homogeneous secular 

equation and αi the exponent for the inhomogeneous one .

[8]

[9]



65

Depolarization tram: 

In Fig. 25 are shown the D voltages for the same neurones impulses, fitted by eq. for            

using the above parameter values and , from the fits 

obtaining the values of                    and             quoted in above Table 2. m 0
3h 0( )1 4 τ eff
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5

6

time (ms)

Neurone V19

Fig. 25.- Depolarisation (D) voltage; (o) experiment; lines: thick, model fit; thin, 
sigmoid.

gNa =1.9 ×10−7m−2 Ω−2VNa t( )
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� Values of are larger than n0 ones, and same above considera-
tion apply to them: they can not be the number of Na+ protein channels, 
much larger. 

�� Also sodium τeff  are larger than potassium τK, although in the 
impulse times td <  tr+h because VNa(t) is interrupted at the smaller  
(abs.value) Nernst ENa than EK for VK(t). 

Table 2.- Initial values of m and h HH functions and D 
relaxation time,         for several single neurones of Helix.

222.841V19

57.058V14

109.645V3

149.945F2

92.751F1

Neurone m0
3 h 0( )1 4 τ eff (ms)

τeff

m0
3h0( )1 4
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z In  Fig.26 is shown the frequency spectrum of VNa(t) for neurone V-19, and the fit by the 
corresponding lorentzian,        .

zz D voltage is unmodified by applied weak AC MF and again solving of D equation under 
MF with ICa term is only needed for strong MF of  > ≈ 1 kOe
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Fig.26.- Frequency spectrum (�) 
for impulse depolarization of 
neurone V-19. Line is the 
lorentzian fit . L f( )
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2.- Magnetic field frequency dependence of 
bioelectric activity: frequency window effect 
(FWE).
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Previous background:

V In 1975 Adey and co. (15) prepared newborn chicken brain slices and embedded 

them in a physiological water solution doped with radioactive as 

marker. The tissue was then irradiated with a radiofrequency (RF) field of 147 MHz, 

amplitude modulated by an ELF MF (of amplitude 25 - 30 nT) in the interval 0.5 

- 35 Hz, observing an increase of efflux from the tissue. The experiments 

demonstrated two things:

i) the RF (147 MHz) electromagnetic field (EMF) does not produce a measurable 

efflux increase (although a matter of current discussion);

ii) a calcium efflux increase was observed for the tissue irradiated with the ELF

modulated wave, but only within an interval of about 5-25 Hz, so called frequency 

window effect (FWE).

(15) See Bawin S.M., Sheppard A. and Adey W.R., Bioeletrochem. Bioenergetics. 5: 67, 1978 and references 

therein; for further FWEs see M.J. Azanza and A. del Moral, Prog.Neurobiol. 44:517-601, 1994.

HCO3
− 45 Ca 2+

45 Ca 2+
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Fig.27.- The points (�) are the experimental efflux increase from chicken brain under 

application of  147 MHz EMF carrier (intensity 0.8mW/cm2), amplitude modulated by a 

MF of frequency, fM between 0.5-35 Hz and B0 ≅30 nT (15). The curve is the theoretical 

lorentzian, fitted according to our model lorentzian (symbols C (Ο) and U (z) 

respectively correspond to sham and unmodulated EM-wave experiments).

(15) Bawin S.M., Sheppard A. and Adey W.R., Bioeletrochem. Bioenergetics. 5: 67, 1978.

45 Ca2+
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z z FWE was afterwards found in many other kinds of cells and experimental 

conditions (see Azanza & del Moral, 1994 for a review), in particular:

} for the bioelectric frequency, f dependence with the applied ELF MF frequency,  

fM in Helix single neurones (16), which constitutes our current lecture.

}}We have also found a FWE  in Helix brain neurones, irradiated with microwaves

of 9.6 GHz (I< 75 mW/6 mm2) amplitude modulated between fM= 2-20 Hz, but for 

the neurone firing frequency, (∆f = 4 Hz).f fM( )

(6) Azanza M.J., and del Moral A. Prog. Neurobiol. 44: 517-601, 1994.
(16) Pérez-Bruzón R.N., Azanza M.J. And del Noral A. J.Magn.Magn.Mat.272-276:2424, 2004
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Lorentzian dependence with fM of Ca2+ efflux (Adey and co. experiment):

z Since Ca2+ electrochemical gradient, ECa displaces these ions to the cell 

interior, the observed efflux was interpreted as Ca2+ liberation from the

external membrane surface.

z z Our new observation is that the calcium efflux closely follows a 

lorentzian curve, written now in the normalized form,

,    [10]

where         is the frequency at the maximum efflux        . 

| Effectively, in Adey’s Ca2+ efflux FWE the shown continuous line is the 

fit by eq.[10] to the experimental calcium efflux, and where                  ≅ 14 

Hz  and                         14.8 Hz.

φ ωM( )= φ ω0( ) ∆ω 2( )2 ωM − ω0( )2 + ∆ω 2( )2[ ]
ω0 φ ω0( )

f0 = ω0 2 π
∆f = ∆ω 2π =
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Model for the FWE in sigle neurones:

� A quantitative explanation of such a FWE, although profusely mentioned and 

discussed since 1975 (6), has remained unknown. 

�� Although Adey and co. considered that the electric field of the ELF EMF was 

the responsible for the FWE, it is now clear that it is the MF the responsible 

one (16).

��� Such a conclusion also stems from our experiments performed upon single 

neurones of Helix, submitted to an AC MF, of amplitude 0.1µT-1 mT ,in the 

range of 0.1 - 80 Hz. 

���� We have observed, for ≈56% of the neurones studied, a decrease in their 

bioelectric frequency, f ,with the increase of MF frequency, fM (              ), and 

that the frequency dependence follows a lorentzian function as well, 

i.e. there appears a FWE for the firing frequency.

(6) Azanza M.J., and del Moral A. Prog. Neurobiol. 44: 517-601, 1994.

(16) Pérez-Bruzón R.N., Azanza M.J and del Moral A. J. Magn. Magn. Mat. 272-276: 2424, 2004.

ωM = 2πfM

ω ωM( )
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Origin of lorentzian spectrum or FWE:

�The lorentzian frequency, fM dependence either of the calcium efflux            to the extra-

cellular fluid,   or the bioelectric frequency dependence, f(fM) in Helix neurones suggest a 

common origin for the time dependence of the mechanism involved in the Ca2+ ions 

detaching from their binding sites and their final sequestration or capture. 

��This dependence merely is that the amount of Ca2+ ions either freed to the external or to 

the cytosol sides from the membrane must vary in the form

,     [11]

for an applied ELF MF starting at t = 0, solution of a dynamic equation of Ca2+ relaxation 

���This is so because the Fourier transform of a lorentzian function is an exponentially 

time decaying function (i.e. a relaxation process), with relaxation time                      .

V This is our main point for explaining the FWE.
VV This is a very important observation,  signalling:

why ELF-MF are the very significant ones for the interaction of neurons with 

quasistatic magnetic fields (1-100 Hz)!.

φ ωM( )

N t( )= N 0( )exp −t / τCa( )

τCa = 2 ∆f

dN dt = −N τCa
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� The time τCa is the one required for performing: the process of Ca2+ liberation

from membrane, mainly Ca2+ diffusion within the external or cytosol fluids

and final Ca2+ sequestration either by a protein channel or incoming to the 

radiactivity counter for the externally freed Ca2+ ions. 

�� For the Ca2+ ions freed to the extra-cellular fluid they will end up fully 

thermalized and dissolved in it, increasing its concentration ( efflux in 

Adey & Bawin’s experiment). 

��� For the Ca2+ ions liberated to cytosol, they will diffuse and finally they 

will be captured by a K+-protein channel through the calmodulin attractive 

electric field, EpK (this field is active within the Debye length only!). 

45 Ca 2+
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� The time τCa is the one required for performing: the process of Ca2+ liberation

from membrane, mainly Ca2+ diffusion within the external or cytosol fluids

and final Ca2+ sequestration either by a protein channel or incoming to the 

counter for the externally freed Ca2+ ions. 

�� For the Ca2+ ions freed to the extra-cellular fluid they will end up fully 

thermalized and dissolved in it, increasing its concentration ( efflux in 

Adey & Bawin’s experiment). 

��� For the Ca2+ ions liberated to cytosol, they will diffuse and finally they 

will be captured by a K+-protein channel through the calmodulin attractive 

electric field, EpK. 

45 Ca 2+



77

���� We can quantitatively express the above considerations by Fourier 

transforming the observed lorentzian function , which represents 

either the efflux              or the bioelectric frequency            dependencies, 

around the neurone spontaneous frequency, ω 0,  i.e. 

[12]

& Since the central frequency                in [12] is assumed to be the spontaneous 

average bioelectric frequency, so we obtain a “resonance” or maximum of 

calcium efflux  when ωM = ω0.

 L ωΜ( )
φ ωM( ) ω ωM( )

  
N t( )= L ωM( ) ω Beff = 0( )exp −αBef

2( )exp −i ωM − ω0( )t( )dωM =
−∞

+∞

∫

ω Beff = 0( ) exp −αBeff
2( ) 2 ∆ω 2( )

ωM − ω0( )2 + ∆ω 2( )2
−∞

+∞

∫ exp −i ωM − ω0( )t( )dωM =

ω Beff = 0( ) exp −αBeff
2( )exp −t τCa( )

ω Beff = 0( )
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Calcium current:

| If we now recall that   [Ca2+] = C/f (Beff,T) or the initially (at t = 0) 
detached Ca2+ ion concentration for a burst, we end up with the Ca2+ time 
relaxation eq.

where                          is     the initial Ca2+ current  in a burst and  τCa the      
Ca2+ relaxation time (diffusion time in the cytoplasm).

|| Since                       , which is experimentally accessible from the spectra           
,we can determine that time from experiment.

τCa = ∆ω 2π

( ) ≈t,BI effCa ( ) ( ) ( )Ca
2
effCaM texpBexpqf'C 2 τ−α+− + ( ) ( )CaeffCa texp0,BI 2 τ−= +

  L ωΜ( )

( )0,BI effCa2+
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� In  Helix brain neurones, repetitive narrow bursts of higher frequency, of shorter

duration with  with fM increase, and superposed to the main f(fM) lorentzian decrease 

below  (12), also are reminiscent of a FWE:

�� Note that the model distribution of spontaneous bioelectric frequencies, 
(density of frequencies, setting   ωM = 0 in       ) for the membrane, is also lorentzian,  
extremely narrow,

 D ω0( )

   

f0

Fig.29.- fM=0 Hz                   fM=0.5 Hz fM=1 Hz
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���� The bioelectric frequency f vs. fM variation for Helix brain mapped 

neurones F1 and V14, under AC MF of B0=1 mT is very well fitted  by a 

lorentzian .  

Fig.32.- Variation of bioelectric frequency, f with MF frequency, fM. Experiment (z); 

lines are lorentzian fits , with f0 =2.5, 2.0 Hz and            = 9.9 , 2.7 Hz for 

neurones F1 and V14 respectively.
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Ca2+ diffusion in the origin of lorentzian spectrum in neurones:
6 Biolectric activity is commanded by AC MF Ca2+ ions internally detached to the cytosol, 
that join the K+-protein channels and open them, giving rise to sorting out of K+, or H+D 
process.  

66 Therefore this mechanism should be also operative in the chicken brain bioelectric activity, 
and therefore all experiments reveal the Ca2+ simultaneous detaching from both
surfaces of the membrane.

666 Besides the determined Ca2+ relaxation times, τCa are 135 ms (chicken brain) and 

between 93-365 ms for the studied neurones of Helix. An ab-initio calculation of the Ca2+

relaxation time, τCa is very difficult, if we consider the mentioned above kinetics involved. 

(In fact a first principles calculation of the K+ and Na+ relaxation times in HH equations is 

still an open problem, relaxation times left as adjustable parameters as we showed before). 

6666 However from τCa we can estimate the mean diffusion length of Ca2+ in water, using 
Einstein’s “annum mirabilis” (1905) eq. for a random walk (17):

[13]

where D is Ca2+ diffusion coefficient. Taking , the typical diffusion coefficient

for small molecules in water (17), we obtain                                       , reasonable values for 

the studied neurones of average diameter d ≈100 µm (1, 14).

(17) See e.g. Nelson P., Biological Physics, Energy, Information, Life, Freeman, New York, 2004.

  
z

2 ≈ 30 − 60 µm

  
z2 = 6DτCa

D ≈10−9 m2s−1
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