

Magnetic sensors: from ultrathin film growth to sensor integration in unexpected systems

Susana Cardoso de Freitas

Group leader Spintronics & Magnetic Sensors

INESC – Microsystems and Nanotechnologies Lisbon, Portugal www.inesc-mn.pt

Outline

Magnetoresistive sensors

- thin film materials
- thermal stability
- noise, SNR => detectivity for pT
- 3D detection on chip

Applications

Magnetic sensors

WHY MAGNETORESISTIVE SENSORS ARE CANDIDATES FOR MANY APPLICATIONS ?

INESC MN Microsistemas & Nanotecnologias

Magnetic tunnel junction - TMR

INESC MN

Microsistemas & Nanotecnologias

Accurate control of the thin film thickness - impact on TMR - impact on R

INESC MN

Microsistemas &

Nanotecnologias

1 Å => 10x R

Microsistemas & Nanotecnologias

Film thickness: Controlled at the atomic scale 1 Å = 0.1 nm

Multilevel device patterning

MgO target with Ar plasma

Microsistemas & Nanotecnologias

Wafer microfabrication in a Clean Room

Challenges II

Low noise, high signal

How to distinguish signal from noise ?

P.P.Freitas, R.Ferreira and S.Cardoso "Spintronic Sensors", Proceedings of the IEEE, 104, 1894 (2016)

E. Paz · <u>S. Serrano-Guisan</u> · <u>R. Ferreira</u> · <u>P. P. Freitas</u> – J. of Applied Physics; 115. 2014

Noise Spectrum of Magnetoresistive Sensors Main noise contributions

Field detectivity (D)

INESC MN

Microsistemas & Nanotecnologias

Strategies to improve the minimum detectable field

Field modulation for high frequency

Increase MR Increase V Reduce linear range ΔH Reduce Hooge value Sensors, *18*(3), 790; (2018) Micromachines, *7*(5), 88 (2016) IEEE Trans. Magn. 48 (11), pp. 4115 (2012) Journal of SPIN, Vol.1 (1), pp 71-91 (2011) J.Appl.Phys. 103, 07E924 (2008) Appl. Phys. Lett. 95, 023502 (2009)

magnetic MEMS

Modulate dc magnetic field at high frequency using MEMS resonators with incorporated magnetic flux guides

goal

shift the sensor operating frequency to the kHz region where the noise can be 2 orders of magnitude lower then dc

Appl. Phys. Lett. 95, 023502 (2009) J.Appl.Phys. 103, 07E924 (2008)

geometry

INESC MN Microsistemas &

Nanotecnologias

Strategies to improve the minimum detectable field

Field modulation for high frequency

Increase MR

Increase A Reduce linear range ∆H Reduce Hooge value Nat Mater, 2004, 3:862–867 J PhysD-Appl Phys, 2007, 40: R337 J. Physics: Cond.Matter, 19 (2007) 165221 Ann Rev Mater Res, 2009, 39: 277–296 J Appl Phys, 2007, 101: 09B501 J. Appl. Phys, 99, 08A907 2006

"Magnetoresistive Sensor Development Roadmap (Non-Recording Applications)" IEEE Trans.Magn. (2019)

200mm backend GMR / TMR technology

INESC MN

Microsistemas & Nanotecnologias

Strategies to improve the minimum detectable field

Field modulation for high frequency

Increase TMR

Increase V (area or thickness)

Reduce linear range ∆H Reduce Hooge value R.Chaves, et.al , Appl. Phys.Lett, 91, 102504 (2017) E. Paz et.al – J. Applied Physics; 115. 2014

Large Series 1102 TMR elements with $A=100x100 \ \mu m^2$ each. **INESC MN**

Microsistemas & Nanotecnologias

1 mm x 1 mm

E. Paz · <u>S. Serrano-Guisan</u> · <u>R. Ferreira</u> · <u>P. P. Freitas</u> - Journal of Applied Physics; 115. 2014

Saving space: GMR sensors packed

AIP Advances 8(5):056644 (2018) Scientific Reports , 11, 215 (2021)

Microsistemas & Nanotecnologias

Packed arrays of sensors

AIP Advances 8(5):056644 (2018) Scientific Reports, 11, 215 (2021) [1] E. Paz et al., J. Appl. Phys., vol. 115,2014. [2] tdk.com, "TDK biomagnetic sensor", 2019 [3] S. H. Liou et al., Proc. IEEE Sensors, 2009 [1] P. Besse et al Appl. Phys. Lett. 80, 4199 (2002) [2] P. Maletinsky et al Nature Nanotechnology 7, 320-324 (2012) [3] F. Montaigne et al Sensors and Actuators A: Physical 81, 324-327 (2000) [4] L. Caruso et al Neuron 95, 1283-1291 (2017) [5] R. Jahns et al Sensors and Actuators A: Physical 183, 16-21 (2012) [6] F. Barbieri et al Scientific Reports 6, 39330 (2016) [7] J. Barry et al PNAS 113, 14133-14138 (2016) [8] Bartington Instruments, Mag-03 Three-axis [9] S. Yabukami et al JMMM 290, 1318-1321 (2005) [10] T. Sander et al Biomedical Optics Express 3, 981-990 (2012) [11] M. Pannetier et al Science 304, 1648-1650 (2004) [12] J. Gallop Supercond. Sci. Technol. 16, 1575 (2003) [13] I. Kominis et al Nature 422, 596-599 (2003) E. Paz et al., J. Appl. Phys., vol. 115,2014. [14] [15] tdk.com, "TDK biomagnetic sensor", 2019 [16] S. H. Liou et al., Proc. IEEE Sensors, 2009

Microsistemas & Nanotecnologias

Applications

- Neurosciences
- Robotics
- Pattern readout
- Biochips

If no time: move to end

Microsistemas & Nanotecnologias

Applications

Neuronal probes with MR sensors

Microsistemas & Individual **Nanotecnologias** Cell assembly pyramidal cells Estimation of the magnetic field: L1 MagnetoEncephaloGraphy: • SQUID - signal distance = 3 cm current Field = 1 fT(Field decay : $1/(r^2)$ flow Magnetrodes: ٠ 2/3 MR - signal distance = $10-100 \mu m$ Field $\approx 100 \text{ pT} - 1 \text{nT}$ L4 Estimated fields ~pT - nT 5 L5 100 µm 100 µm Helmchen and Denk. 2005. **FET-EU project**

Methods 2 : 932-940.

Magnetrodes

AGNETRODES

SEM image: sharp tip (in-vivo)

SEM image: flat tip (in-vitro)

When penetrating the tissues:

Valadeiro et al IEEE Trans Mag 51 (2015) 4401104

In Vivo validation of MR sensor probes

L.Caruso, S.Cardoso, P.P Freitas, P.Fries, M. Lecoeur, et.al

"In vivo magnetic recording of neuronal activity", Neuron, 95, 1–9 (2017)

IEEE Trans Magn. vol. 51 (11) 4401104 (2015) J.Gaspar et.al, IEEE Trans Magn. Vol.53 (4), 5300204 (2017

Applications in robotics

INESC MN Microsistemas & Nanotecnologias

If no time:move to

Magnetic cilia bending induces magnetic profile variation

MR sensor transduces variation into an electrical signal

Geometry A

INESC MN

Surface roughness (μ m)

P.Ribeiro et.al., IROS 2020 : International Conference on Intelligent Robots and Systems 2020

Proof of concept Fruit quality classifier

Braeburn apples

- 12 ripe fruits
- 12 senescent fruits

Sabrina strawberries

- 12 ripe fruits
- 12 senescent fruits

Data acquisition

- Data rate: 1 kSPS
- Scan speed: 1 mm/s
- 10 consecutive scans in each area
- 2 areas per fruit

FRUIT QUALITY SENSING - RESULTS

Microsistemas e Nanotecnologias

NESC

3 features were extracted from the signal

	FEATURE	WHAT IS MEASURED	PHYSICAL CHARACTERISTIC
	Stiffness (E)	Sensor signal with achieved contact	Fruit hardness
*	Waviness (S)	Std. deviation of 100 point moving average	Deformation over fruit surface
•	Roughness (R)	Std. deviation of high- pass filtered (f > 150 Hz) signal	Fruit surface texture
	Fruit can be cla into two classes	ssified	Ripe Senescent

FRUIT QUALITY SENSING - RESULTS

Figure 6.4: Computed *E* parameter histogram from all scans of apples scanned using a geometry A ciliary sensor.

NESC

Microsistemas e Nanotecnologias

Advanced Robotics @ Queen Mary ARQ **TÉCNICO** LISBOA NESC MI **FRUIT QUALITY SENSING - RESULTS** Institute for Systems and Robotics IJî Microsistemas e Nanotecnologias 1 Apple Strawberry Conf. A True positive True positive True negative True negative Accuracy Accuracy 11/12 12/120.96 7/12 10/12 0.71 h = 3 mmNaïve Bayes Naïve Bayes $\phi = 400 \,\mu m$ Random Forest 10/12 12/120.92 Random Forest 8/12 11/120.79

m			True positive	True negative	Accuracy	-	True positive	True negative	Accuracy
	h = 1.6 mm	Naïve Bayes	10/12	11/12	0.88	Naïve Bayes	10/12	7/12	0.71
uc	$\phi = 320 \ \mu m$	Random Forest	10/12	11/12	0.88	Random Forest	10/12	10/12	0.83

Conf. C

		8	True positive	True negative	Accuracy		True positive	True negative	Accuracy
	h = 3 mm	Naïve Bayes	9/12	8/12	0.71	Naïve Bayes	10/12	10/12	0.83
1112	φ = 400 μm	Random Forest	9/12	11/12	0.83	Random Forest	10/12	10/12	0.83
				2					\searrow

"From farm to fork"

INESC MN Microsistemas & Nanotecnologias

Magnetic Biosensors and biomedical interfaces

Needle sensors Flexible MR Sensors 40 μm

gold pad

Spin Valve sensors

If no time: move to

Microsistemas & Nanotecnologias

INESC MN

Magnetic trap

Microfabrication

Silvério et.al., Micromachines 10(9):607 (2019);

Silverio et. Al., IEEE Trans Magn. 53 (11) 5100806 (2017)

- I. PECVD 500 nm SiO₂: 6" wafer
- 2. magnetron sputtering 15 nm TiW(N)/600 nm AlSiCu/15 nm TiW(N) : bottom electrode (M1 layer)
- 3. optical lithography
- 4. etching
 - This MI film also connects the center of the coils to the contact pad
- 5. RF sputtering SiO₂ 500 nm /Al₂O₃ 25 nm
 - passivation layer to insulate the coil from the bottom electrode
- 6. optical lithography
- 7. electroplating 40 μ m of Cu (M2 layer)
- 8. spin coating 40 µm polyimide
 - passivation
- 9. sputtering I μm AlSiCu
 - ensures an optimum optical contrast for the detection of the fluorescence in the MNP
- 10. sputtering 2 µm SiO₂
 - guarantees the planar surface required for the magnetic trapping and in the future, to promote probe linking
- II. RIE to open 250 μm wide vias for contact pads

Magnetic Field Mapping

Magnetic Tunnel Junction (MTJ), sensitivity 0.04 V.mT⁻¹, dimension 91 \times 14.5 μm^2

The vertical magnetic field over the **central coil** is **opposite** to the vertical field in the **4 outer coils**

• favorable for particle trapping and cell concentration

The field generated by 100 mA was measured to range between -70 to +90 μ T

1000 mA actuation + PM field

- larger magnetic fields: -1500 to +3000 μT
- sufficient to generate a magnetic force to deflect the MNP trajectories and trap them

Thermal response

• Joule heating \rightarrow flow cooling

Silvério et.al., Micromachines 10(9):607 (2019); Silverio et. Al., IEEE Trans Magn. 53 (11) 5100806 (2017)

Thermal response

pulsed current: 500 mA 8 s ON / 15 s OFF

Silvério et.al., Micromachines 10(9):607 (2019); Silverio et. Al., IEEE Trans Magn. 53 (11) 5100806 (2017)

Tombelli, et.al., Analytical and Bioanalytical Chemistry 414 (10), 3243 (2022)

MNP Trapping and concentration

direction of the current in the coils

I 6 pulses @ _750 mA I s ON + 2 s OFF + I s ON + ...

$$T_{surf,max} = 3 \circ C$$

MNP concentration 0.058 mg.mL⁻¹

Silvério et.al., Micromachines 10(9):607 (2019);

Silverio et. Al., IEEE Trans Magn. 53 (11) 5100806 (2017)

Tombelli, et.al., Analytical and Bioanalytical Chemistry 414 (10), 3243 (2022)

Magnetic biosensors

Challenges – quantification

- **100nm magnetic particles** coated with protein A;
- Rabbit α-goat Ab → More affinity to protein A;
- Goat α-E.coli Ab → Already tested by IF;
- Special SEM processing without organic solvents;

Adapted from Fernandes et.al. (2014)

UB010 15 0kV 7 0mm x12 0kV0 600 (FCUL)

INESC MN Microsistemas & Nanotecnologias

ELSEVIER

Contents lists available at ScienceDirect

Biosensors and Bioelectronics: X

journal homepage: www.journals.elsevier.com/biosensors-and-bioelectronics-x

INESC MN

Microsistemas & Nanotecnologias

If no time: move to

On-site magnetic screening tool for rapid detection of hospital bacterial infections: Clinical study with *Klebsiella pneumoniae* cells

Ana R. Soares ^{a,b,*}, R. Afonso ^{b,c}, V.C. Martins ^a, C. Palos ^d, P. Pereira ^d, Diogo M. Caetano ^{b,c}, Davide Carta ^{a,b}, S. Cardoso ^{a,b}

^a Instituto de Engenharia de Sistemas E Computadores – Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, 1000-029, Lisbon, Portugal
^b Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal

^c Instituto de Engenharia de Sistemas E Computadores - Investigação e Desenvolvimento, Rua Alves Redol 9, 1000-029, Lisbon, Portugal

^d HBA – Hospital Beatriz Ângelo, Av. Carlos Teixeira 3, 2674-514, Loures, Portugal

Microsistemas & Nanotecnologias

Applications in scanners

If no time: move to

Swipe reader: printed barcode

Regular laserjet toners contain ferromagnetic (Fe₃O₄/Fe₂O₃) nanoparticles

Maglb INESC MN Microsistemas & Nanotecnologias

Alignment

Disc magnet provides a limited region where B < 1 mT (±170 μ m) \rightarrow requires good accuracy from the alignment procedure

Swipe reader: assembly

Purpose:

- Hold reader components
- Protect sensor chip
- Limit sensor tilt
- Minimise sensor-barcode distance

MaglD

S.Abrunhosa. S.Cardoso, et.al IEEE Trans. Magn. 58 (8), 4002304 (2022) **INESC MN**

Microsistemas & Nanotecnologias

Handheld magnetic code reader

September 2020

4 mm

July 2020

February 2021

February 2020

October 2020

December 2020

May 2020

13/20

Handheld magnetic code reader

NEXT CHALLENGE: Decode QR codes

Acknowledgments

To my team at INESC-MN (past and present)

INESC MN Microsistemas & Nanotecnologias

Contact for PhD, Post-Doc or internships: scardoso@inesc-mn.pt

a Tecnologia

IAPMEI

Mag-ID H2020-EIC-FTI-870017 MASMA H2020-EIC-SMEInst n. 858934 MagScopy4IHC LISBOA-01-0145-FEDER-031200