

Magnetic vortex nanodiscs for cancer cell destruction

Alfredo García-Arribas

Club Español de Magnetismo. Sevilla, septiembre 2017

Magnetic vortex nanodiscs for cancer cell destruction

Maite Goriena-Goikoetxea

Outline

- Introduction
 - Motivation
 - Magnetic vortex
 - Objetives of the work
- Fabrication of the discs
 - Hole-mask colloidal lithography
 - Morphological characterization
 - Release procedure
- Magnetic properties and actuation
 - Magnetization process and phase diagram
 - Large vortex core
 - Magneto-mechanical actuation
- Discs in cancer cells
 - Intracellular intake
 - Cytotoxicity
 - Magneto-mechanical treatment

Outline

- Introduction
 - Motivation
 - Magnetic vortex
 - Objetives of the work
- Fabrication of the discs
 - Hole-mask colloidal lithography
 - Morphological characterization
 - Release procedure
- Magnetic properties and actuation
 - Magnetization process and phase diagram
 - Large vortex core
 - Magneto-mechanical actuation
- Discs in cancer cells
 - Intracellular intake
 - Cytotoxicity
 - Magneto-mechanical treatment

Introduction

Magnetic nanoparticles for biomedicine (diagnosis and therapy)

- Magnetic Resonance Imaging (MRI)
- Drug delivery
- Hyperthermia

• ...

Iron oxides, chemically produced.

Patterned magnetic particles

- Great shape versatility
- Many different compositions
- Excellent reproducibility
- ...

Produced by physical methods (vapor deposition, lithography, ...)

Motivation

Magneto-mechanical actuation of Permalloy discs with vortex state

Kim et al, Nature Materials 9, 165–171 (2010)

Magnetic Vortex state

- Large permeability and magnetization
- Null remanence

- → high actuation capability
- → no particle agglomeration

Magnetic Vortex state

Studied intensively in the last decades

R. P. Cowburn *et al.* PRL **83** (1999) 1042 T. Shinjo *et al.* Science **289** (2000) 930

K. Y. Guslienko et al. PRB 65 (2001) 024414

Spin torque oscillators

S. Tsunegi et al. Appl. Phys. Lett. 109, 252402 (2016)

Objetives

Downsize Permalloy discs, maintaining the vortex state

Explore the size limits of the vortex state

Few works on magnetism of sub-100 nm discs

C.A. Ross et al. PRB 65, 144417 (2002)

R.K. Dumas et al. PRB 75, 134405 (2007) I.V. Roshchin et al. Euro. Phys. Lett. 86, 67008 (2009)

In-vitro test of magneto mechanical actuation

Outline

- Introduction
 - Motivation
 - Magnetic vortex
 - Objetives of the work
- Fabrication of the discs
 - Hole-mask colloidal lithography
 - Morphological characterization
 - Release procedure
- Magnetic properties and actuation
 - Magnetization process and phase diagram
 - Large vortex core
 - Magneto-mechanical actuation
- Discs in cancer cells
 - Intracellular intake
 - Cytotoxicity
 - Magneto-mechanical treatment

Fabrication of the discs

Need a method:

- relatively simple. Reasonable preparation time.
- moderate cost. Affordable for a standard laboratory.
- high yield. Enough sample production for laboratory in-vitro assays.

Standard UV photolithography

- 👎 Minimum size ~1µm.
- High yield and fast process.
- de Standard laboratory equipment (also used in this work).

Deep UV (DUV) lithography

- description of the art below 14 nm.
- de Standard in microelectronic industry. Suited for high volumen production.
- Extremely expensive for research laboratories.

Electron beam lithography (EBL)

- 👍 Very small features (< 10 nm).
- de Expensive, but usual in research laboratories.
- F Small yield and slow process.

Others (nanoimprint lithography, etc ...)

Fabrication of the discs

0000000000

Hole-mask colloidal lithography

Use charged spheres to create a distribution of holes on a polymer

1) deposit a PMMA layer (spin coating)

non-regular dense arrangement of nanospheres

Hole-mask colloidal lithography

4) Ti sputtering

6) Oxygen plasma PMMA etching

Ti template of holes

Hole-mask colloidal lithography

7) Py sputtering

Morphology of the discs

Production yield

Substrate detachement

- HCL fabrication process performed onto a sacrificial layer
- Ge offers best results (Cu, SiO₂ also tested)
- Ge disolved in H₂O₂, releasing the discs
- Magnetic decantation for collecting them

Substrate detachement

Micron-sized discs

Microdiscs (Ø **2 μm)** Fabricated at Cambridge University (Prof. Cowburn)

Standard UV photolithography (lift-off)

Outline

- Introduction
 - Motivation
 - Magnetic vortex
 - Objetives of the work
- Fabrication of the discs
 - Hole-mask colloidal lithography
 - Morphological characterization
 - Release procedure
- Magnetic properties and actuation
 - Magnetization process and phase diagram
 - Large vortex core
 - Magneto-mechanical actuation
- Discs in cancer cells
 - Intracellular intake
 - Cytotoxicity
 - Magneto-mechanical treatment

Magnetic Properties

- Magnetic phase diagram of Py discs
- Magnetization process and hysteresis loops
- Structure of the vortex in small dots

Use of different techniques

- **MOKE** 20 µm spot size → averages hundreds of discs
- **SQUID** average the whole sample
- MFM A. Asenjo, ICM-CSIC Madrid
- Micromagentic simulations OOMMF

Magnetic phase diagram

The magnetic ground state of Py discs depends of the aspect ratio

Magnetic phase diagram

Experiment, theory and simulation

W. Scholtz et al. J. Magn. Magn. Matter. 266, 155 (2003)

K.L. Metlov, K.Y. Guslienko J. Magn. Magn. Matter. **242-245**, 1015 (2002)

S.-H. Chung et al. PRB 81, 024410 (2010)

Micromagnetic simulation

M. Goiriena-Goikoetxea et al. Nanotechnology 27, 175302 (2016)

Magnetic phase diagram

Small Py discs studied in this work are close to boundaries

Magnetization process

Magnetization process

Magnetization process

Uniformity of patterning

Influence of the core size in the magnetization process

Py discs R = 500 nm

T. Shinjo et al. Science 289, 930 (2000)

*R*_c ~ 20-30 nm

c << 1, classical vortex

negligible core contribution to magnetization Py discs R = 70 nm

M. Goiriena-Goikoetxea et al. Nanoscale 9, 11269 (2017)

*R*_c ~ 20-30 nm

c < 1, *large* vortex core

non-negligible core contribution to magnetization

 $c = R_c/R$

The size of the core can be determined by micromagnetic simulations

profiles of out-of-plane component of the magnetization

 $R > R_c$ c > 1, *extra large* vortex core

Analitical model of the magnetization process

c << 1, classical vortex

K. Y. Guslienko et al. PRB 65, 024414 (2001)

Model neglects core magnetization predicts the vortex annihilation field:

$$H_{an} = [4\pi F_1(\beta) - (l_{ex}/R)^2]M_{s.}$$

 $(\beta = T / R)$

c > 1, extra large vortex core

New analytical model, including core magnetization

$$H_{an}(c,\beta,R) = \frac{(1+c^2)}{2c}\kappa(c,\beta,R)M_s$$

M. Goiriena-Goikoetxea, K. Y. Guslienko *et al.* Nanoscale **9**, 11269 (2017)

Summary of the calculation procedure

- Start from energy density $w = A(\nabla m_{\alpha})^2 \frac{1}{2}\mu_0 M_s \mathbf{m} \mathbf{H}_{\mathbf{m}} + w_H$ exchange + magnetostatic + Zeeman
- Model elaboration yields w = w(c,s,H) $c = R_c/R > 1$ core size $s = \rho/R$ position of the core in the disc
- For each value of *H*, $\frac{\partial w}{\partial s} = 0$ gives the equilibrium position of the core s_0 .
 - Annihilation field H_{an} is the field at which the core is at the border of the disc $s_0 = 1$.

$$H_{an}(c,\beta,R) = \frac{(1+c^2)}{2c}\kappa(c,\beta,R)M_s$$

• The equilibrium core size c_0 is calculated from $\frac{\partial w}{\partial c} = 0$

with vortex at the center of the disc s = 0.

Additional MFM results

Movement of the vortex core

Additional MFM results

it is possible to distinguish the quirality and the polarity of the vortex

different polarity, diferent quirality

different polarity, same quirality

Magneto-mechanical actuation

Light transmission experiments

Magneto-mechanical actuation

S. Leulmi et al. APL 97, 253112 (2010)

 $2\,\mu\text{m}$ discs in solution. Variable magnetic field.

Video courtesy of Selma Leulmi, University of Cambridge, UK.

Outline

- Introduction
 - Motivation
 - Magnetic vortex
 - Objetives of the work
- Fabrication of the discs
 - Hole-mask colloidal lithography
 - Morphological characterization
 - Release procedure
- Magnetic properties and actuation
 - Magnetization process and phase diagram
 - Large vortex core
 - Magneto-mechanical actuation
- $\boldsymbol{\cdot}$ Discs in cancer cells
 - Intracellular intake
 - Cytotoxicity
 - Magneto-mechanical treatment

Discs in cancer cells

Interaction of $\begin{cases} \text{microdiscs } (R = 1 \ \mu\text{m}, T = 60 \ \text{nm}) \\ \text{nanodiscs } (R = 70 \ \text{nm}, T = 50 \ \text{nm}) \end{cases}$

with human lung carcinoma cells

Protocol of the in-vitro assays

Discs in cancer cells

Asses the effect of the discs and the alternating magnetic field

The same mass of disc is added to the wells

10 microdiscs/cells

2000 nanodiscs/cells

Even without functionalization, discs are internalized by the cells mean count ~6 microdiscs/cells mean count ~100 microdiscs/cells

Percentage of cells that have internalized discs

Nanodiscs seems to be easier in-taken by the cells, but

- nanodiscs are more difficult to count in the SEM images
- better distribution of the nanodiscs in the well

TEM images. Microdiscs inside cells.

Discs seems to be inside lysosomes.

TEM images. Nanodiscs inside cells.

Discs inside a lysosome

Nanodiscs interacting with the membrane

Cytotoxicity

Brightfield image

Fluorescence images

cells with discs

all cells

death cells

After 24 h incubation, nearly 100% of cells with discs survival

Magneto-mechanical treatment

Magneto-mechanical treatment

Cell viability evaluated 1, 2 and 4 H after the treatment

Typical result. Cells with microdiscs actuated for 10 min.

Example: only cells with nanodiscs die after 30 min in perpendicular field

Brightfield image

Fluorescence images

Magneto-mechanical treatment

Comparison of the effectiveness of the mechanical treatment

Nanodiscs are more effective!

Brightfield image

Fluorescence images

Magneto-mechanical treatment

Schematic overview of the results

Summary

- Discs with diameters down to 60 nm have been fabricated by Hole Mask Colloidal lithography with a satisfactory morphology and production yield.
- They display a well-defined magnetic vortex behavior, even being near the limits of the phase diagram.
- The size of the vortex core is comparable, or even greater, than the size of the discs. A new theory nicely matches the experimental results.
- *In vitro* assays reveal no cytotoxicity of the discs and give promising results for cancer cell destruction using the magneto-mechanical actuation

Acknowledgements

Dr. Iñaki Orue Fdez-Gubieda

Mr. Mikel Rouco

Dr. Alicia Muela

Universidad del País Vasco

ikerbasque **Basque Foundation for Science**

Universidad del País Vasco Euskal Herriko Unibertsitatea

Prof. Luis

Fdez-Barquín

iCſ

Ms. Maite Goiriena-Goikoetxea **Benateria**

Ms. Eider Prof. Agustina Berganza Asenjo

Dr. Miriam Jaafar

GOBIERNO DE ESPAÑA MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

MAT2014-55049-C2-1-R

