

Acknowledgement (work on FORC technique) Prof. Laurentiu Stoleriu Prof. Leonard Spinu (USA) Prof. Liliana Mitoseriu Prof. Petru Adrei (USA) **Prof. Cristian Enachescu Prof. Irinel Chiorescu (USA) Dr. Dorin Cimpoesu** Prof. Dan Ricinschi (Japan) Dr. Ioan Dumitru **Prof. Francois Varret (France) Dr. Petronel Postolache Prof.** Jorge Linares (France) Prof. Wolfgang Wernsdorfer (France) Dr. Radu Tanasa **Dr. Aurelian Rotaru Prof. Marie-Laure Boillot (France)** Dr. Irina Ursachi Prof. Ioannis Panagiotopoulos (Greece) Dr. Ilie Bodale Prof. Horia Chiriac (Romania) Dr. Florica Matau Dr. Liviu Clime (Canada) Dr. Costin Dobrota Dr. Alexandru Atitoaie Dr. Mihai Nica

5

 Classical Preisach Model and FORC identification techniqu Qualitative <i>versus</i> quantitative FORC diagrams Quantitative analysis of the FORC distribution in magnetic nanostructures. Hard/soft magnetic materials Quantum FORC – single molecule magnets. Hysteresis in spin transition materials 	Preisach Model and FORC identification technique
 Qualitative <i>versus</i> quantitative FORC diagrams Quantitative analysis of the FORC distribution in magnetic nanostructures. Hard/soft magnetic materials Quantum FORC – single molecule magnets. Hysteresis in spin transition materials 	vo varsus quantitativa FOPC diagrams
 Quantitative analysis of the FORC distribution in magnetic nanostructures. Hard/soft magnetic materials Quantum FORC – single molecule magnets. Hysteresis in spin transition materials 	ve versus quantitative roke ulagi anis
 Hard/soft magnetic materials Quantum FORC – single molecule magnets. Hysteresis in spin transition materials 	tive analysis of the FORC distribution in magnetic ctures.
 Quantum FORC – single molecule magnets. Hysteresis in spin transition materials 	t magnetic materials
☐ Hysteresis in spin transition materials	FORC – single molecule magnets.
	s in spin transition materials
Discussion. Conclusion	n. Conclusion
Discussio	

Classical Preisach Model identification using FORCs

 $F(\alpha,\beta) = f_{\alpha} - f_{\alpha\beta}$.

(3)

(4)

It can be proved that by knowing the function $F(\alpha, \beta)$, we can determine the weight function as follows:

$$\mu(\alpha,\beta) = -\frac{1}{2} \frac{\partial^2 F(\alpha,\beta)}{\partial \alpha \partial \beta}.$$

Thus, the experimental data provided by the set of first-order reversal curves allows one to determine the weight function $\mu(\alpha,\beta)$. Then, using the model [Eq. (1)], higher-order reversal curves can be determined. It means that the mathematical model [Eq. (1)] has prediction power.

I. D. Mayergoyz, Hysteresis models from the mathematical and control theory points of view. J Appl Phys 57, 3803 (1985).

	Physica B 457 (2015) 280-286	
	Contents lists available at ScienceDirect	PHYSICA B
	Physica B	
ELSEVIER	journal homepage: www.elsevier.com/locate/physb	Vinadeat
Tracking the ind	dividual magnetic wires' switchings in ferromagnetic	Cross!
nanowire array method	s using the first-order reversar curves (FORC) diagram	
nanowire array method Costin-Ionuț Dobrot	ă, Alexandru Stancu*	

PHYSICAL REVIEW B 83, 224107 (2011)
Pressure effect investigated with first-order reversal-curve method on the spin-transition
compounds $[Fe_x Zn_{1-x}(btr)_2(NCS)_2] \cdot H_2O(x = 0.6, 1)$
Auralian Dataru
Groune d'Etude de la Matière Condensée Université de Versailles CNRS-UMR8635, F78035 Versailles Ceder, France
Faculty of Physics. Department of Physics: "Alexandru Joan Cura" University Iasi, Bouleyard Carol I, no. 11, R-200506 Remania, and
Faculty of Electrical Engineering and Computer Science, "Stefan cel Mare" University, Suceava R-720229, Romania
Jorge Linares," François Varret, [†] Epiphane Codjovi, and Ahmed Slimani
Groupe d'Étude de la Matière Condensée Université de Versailles CNRS-UMR8635, F-78035 Versailles Cedex, France
Radu Tanasa, Cristian Enachescu, and Alexandru Stancu [‡]
Faculty of Physics, Department of Physics, "Alexandru Ioan Cura" University, Iasi, Boulevard Carol I, no. 11, R-700506, Romania
Jaap Haasnoot
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, NL-2300 RA Leiden, The Netherlands
(Received 16 December 2010; revised manuscript received 26 March 2011; published 23 June 2011)
> 38

