

Esic Imágenes Magnéticas: Microscopía de Fuerzas Magnéticas

Agustina Asenjo

Dpto. Propiedades Opticas, Magnéticas y de Transporte Instituto de Ciencia de Materiales de Madrid- CSIC

Esquema

Introducción:

- •MFM frente a otras técnicas de observación de dominios.
- •Fundamentos de la Microscopía de Campo Cercano, SPM
- •Detección de fuerzas de largo alcance en SPM, MFM
- •Interpretación de resultados

Aplicaciones del MFM:

- •Materiales duros, estructura de dominios.
- •Interacción débil, dominios de cierre
- •MFM aplicando campo magnético
- •Nanoestructuras
- Procesos dinámicos

Magnetic Imaging Techniques

Technique	Signal	Sample preparation	Spatial resolution	Contrast	Materials	External field	Drawback
Magneto- Optical	Light polarization	Flat and Smooth surfaces	200nm	Walls and domains	K _{per} and K _{in-plane}	Available	Resolution
Bitter	Magnetic colloids distribution	None	100nm	Walls	High stray fields	Available (low speed)	Dirty Sample
SEMPA	Polarized S.E	HV cleaning	50nm	Domains	K _{per} and K _{in-plane}	Difficult	Cleanness
MFM	Charge density	None	20nm	Walls and domains	K _{per} and K _{in-plane}	Available	Tip-sample interaction
Lorentz	F _{lorentz}	UHV cleaning	~nm	Domains	K _{in-plane}	Difficult	Sample preparation

Scanning Probe Microscope

The interaction in the SFM

Potential near a surface: attractive at large distances

The microcantilever and the Hook's law

$$F = -kz$$

k = E/4·W·(T/L)³ k depends on the geometry and material

Beam reflection

Tip-sample Interactions

 $\mathbf{F}_{electrostatic} = \frac{\partial C}{\partial z} V^2 \quad \text{attractive}$ $\mathbf{F}_{vdW} = -\frac{AR}{6z_0^2} \quad \text{spherical tip, A=10^{-19}J}$

Damping, amplitude decrease due to dissipation (magnetic and mechanical interaction, friction..)

Capillarity, attractive force due to the meniscus between the tip and the sample .

Quantum mechanical forces, down to 1nm, atomic resolution by UHV-AFM

Force sensor

MFM probes:

Commercial tips covered with hard/soft magnetic thin film of Co , CoCr , permalloy, ...
Axial magnetization due to shape anisotropy
The resonance frequency, the force constant and the final radio change.

EBID tip grown on top of the pyramidal tip of a commercial Si_3N_4 cantilever. The needle is covered afterwards with 15 nm thick $Co_{80}Ni_{20}$ film

Contrast Mechanism

The interaction energy in MFM

 $E(\mathbf{r}) = -\mu_{b} \int_{\mathrm{tip}} \left[\mathbf{M}_{\mathrm{tip}}(\mathbf{r'}) \ \mathbf{H}_{\mathrm{sample}}(\mathbf{r}+\mathbf{r'}) \right] \ \mathrm{d}^{3}\mathbf{r'} = -\mu_{b} \int_{\mathrm{sample}} \left[\mathbf{M}_{\mathrm{sample}}(\mathbf{r'}) \ \mathbf{H}_{\mathrm{tip}}(\mathbf{r}+\mathbf{r'}) \right] \ \mathrm{d}^{3}\mathbf{r'}$

 M_{tip} is the magnetisation of the tip, H_{sample} is the stray field from magnetisation of the sample M_{sample} is the magnetisation of the sample, H_{tip} is the stray field from magnetisation of the tip

or $E = E_{volume} + E_{surface}$

Tip-sample distance, stray fields

Contrast mechanism:

Negligible interaction: magnetic charge
Weak interaction: reversible effects
Strong interaction: hysteresis effects

Contact mode and dynamic mode

In contact mode the **deflection** of the cantilever is kept **constant**

In dynamic mode the tip is oscillated at the resonance frequency and the **amplitude** of oscillation is kept **constant**

Reunión del Club Español de Magnetismo

Surface interaction

Large Distance Interactions: Magnetic and Electrostatic >10nm

 $\Delta\omega \propto rac{\omega_0}{2k} rac{\partial F_z^{ext}}{\partial z}$ $\Delta A = \frac{A_0 Q}{2k} \frac{\partial F_z^{ext}}{\partial z}$ $\delta \propto \frac{\omega_0}{\beta 2k} \frac{\partial F_z^{ext}}{\partial z}$

MFM System

Photodiode

MFM Advantages

Perpendicular and in-plane Laser
anisotropy
High sensibility ~10⁻¹⁸J/T
Lateral resolution l~ 20nm

•Minimum sample preparation

Topography

<u>2nd image</u> contact/non-contact **other interactions**

1st image

contact/non-contact

topography

Piezo electric tube xy scans and z movement

Oscillator

MFM Interpretation

Assuming that the tip-sample interaction is negligible:

- > The MFM is sensible to the magnetic poles.
- Perpendicular anisotropy: high pole density in the center of the magnetic domains.
- > In-plane anisotropy: high pole density in the **domain walls**.

MFM image of a FePd thin film with perpendicular magnetic anisotropy. The bright and dark contrast corresponds to domains with up and down magnetization Image size: $3 \mu m \ge 3 \mu m$

MFM image of tracks within a commercial hard disk. In longitudinal recording media, the anisotropy is inplane. The bright and dark contrast corresponds to the domain wall. Image size: $10 \ \mu m \ge 10 \ \mu m$

MFM Applications

•Hard magnetic material. Domain structure.

SmCo thin film

4.7µm CoFeB ribbon

•Low anisotropy: Weak interaction Closure domains.

•MFM under an magnetic applied field.

•Nanostructures.

•Dynamic process

Fe₅₀Pd₅₀ Thin Film Hard magnetic material with perpendicular anisotropy

Strips domains

The domain width depends on the square root of the layer thickness for a Kittel structure

	1000	A 100 March 100	10.00	
Т	W	С	Order	\mathbf{K}_{\perp}
1 nm	160 nm	0.6 mN/m	Disordered	
30 nm	200 nm	2.0 mN/m	Ordered	0.91 MJ/m ³
45 nm	260 nm	4.5 mN/m	Ordered	$1.17 M J/m^3$

T: Pt buffer layer thickness, W: Domain width, C: MFM domain contrast,

 $\mathrm{K}_{\!\scriptscriptstyle \perp}$: Perpendicular anisotropy constant (VSM)

<u>Image size:</u> 5mm x 5mm Acquisition Distance: 65nm <u>Magnetic structure:</u> 160nm

Acquisition Distance: 175nm Domain size: 200nm

CoP microtubes

The anisotropy field is much smaller than the demagnetizing field

Closure domains

Zig-zag walls Closure Domains

 \bigotimes

CoP electrodeposited onto 200µm diameter Cu wires

10 µm

size: 18 μ m x 18 μ m

F_M glub gspanol Reunión del Club Español de Magnetismo

tip-sample distance: 25 nm size: 12.5 mm x 12.5 mm

 (\mathcal{R})

FeB/CoSiB multilayers

The magnetization is mainly in-plane (shape anisotropy), however, there are a weak anisotropy out of the plane

Denses stapes domains

In order to reduce the magnetostatic energy, the magnetization oscillates periodically

External magnetic field

FeB/CoSiB multilayers under externally applied field

An external magnetic field is applied to the samples growth onto **flat** substrates.
The evolution of the structure is direct by the tendency to decrease the Zeeman energy

External magnetic field

FeB/CoSiB multilayers under externally applied field

An external magnetic field is applied to the samples growth onto bowed substrates.
The evolution of the structure must be explained by Zeeman energy arguments and the existence of an easy axis in plane

Nanostructures

 $\frac{Co_{80}Cr_{20}}{100nm \ thicker}$ Image size: $3\mu m \times 3\mu m$ Tip-sample distance: 40nm

<u>FePd nanostructures:</u> Pd 3nm/FePd 5nm/Pd 60nm/MgO Image size: 8μm × 8μm Tip-sample distance: 30nm

Electrodeposited Ni nanowires Nanopores diameter: 15 to 90nm Interpores distance: 80 to 500 nm Nanopores length: 0.5 to 5 μm

Dynamic studies

Dynamic studies

Tip-Sample interaction

Other applications

- Magnetic measurement with non magnetic tip
- (a) Topographic AFM image,
- (b) AFM image of the amplitude of the magnetostrictive response
- (c) MFM image
- (d) Schematic domain configuration
- J. Wittborna et al. Dept. Materials Science, Royal Institute of Technology, Stockholm, Sweden

Quantitative MFM

Quantitative measurement of MFM tip fields using Lorentz microscopy

Mc. Vitie Dept. Physics and Astronomy, University of Glasgow, Scotland, UK

Other applications

≭UHV MFM

The Co islands of a height of two monolayers decorate the elbow sites of the underlying Au(111) herringbone reconstruction.

Scan size: 200 nm3200 nm.

R. Wiesendanger, University of Hamburg, Germany

*Low temperature MFM

Vortices in High Tc-Superconductors Image taken at 5.2 K vortices in an external field of 2 mT. BSCCO single crystal. *A. Schwarz, University of Hamburg, Germany,*

Conclusions

- The MFM is a helpful technique for the magnetic characterization. The main advantages are its high resolution and the versatility.
- Tip-sample interaction must be taken into account.
- In hard materials, the domain size obtained from the MFM images can be correlated with the anisotropy of the samples.
- The MFM is sensible to the surface magnetization
- The MFM reveals as a useful instrument for the study of magnetization process in the nanometer scale

